

Bio 374 Spring 2006



## Time/Location:

Monday and Wednesday from 5:00 pm – 6:15 pm, Loyola 200

## Instructor:

Dr. Robert Smith Assistant Professor of Biology Loyola 208 Phone: 941-6581 Email: smithr9@scranton.edu

## Office Hours:

Monday 3:00 - 4:00 pm, Wednesday 3:00 - 4:00 pm. Additional appointment times are available upon request.

## Course description:

Vertebrates are often the most abundant and conspicuous part of our experience of the natural world. Typically, when people are asked to provide an example of a wild animal they name a vertebrate. This lecture course will use a comparative approach to explore the diversity of vertebrates, the characteristics that define each vertebrate taxa, and how those characteristics relate to each group's evolution. Much of the course will be concerned with principles of systematic biology, factors governing vertebrate distribution, methods used by vertebrates to solve environmental problems, inter- and intraspecific interactions, reproduction, life history and the conservation biology of vertebrates. This course fulfills a Population or Organismal Group requirement.

### <u>Materials</u>:

**Textbook**: We are using Pough, F.H, Janis, C. M. and Heiser, John B. 2005. <u>Vertebrate</u> <u>Life</u>, 7<sup>th</sup> edition. Prentice Hall, New Jersey. ISBN 0-13-145310-6.

## <u>Attendance:</u>

There is no strict attendance policy – coming to class is up to you. However, given the intensive nature of a course such as this, I strongly recommend attending all classes.

## Student Learning Objectives:

This class will focus on the biology of vertebrates, examining vertebrate form and function within an evolutionary and ecological context. Upon completion of this course, students will/will be able to:

- 1. Discuss basic evolutionary concepts and principles, including variability, heritability, fitness, natural and sexual selection, evolutionary change, adaptation, microevolution, speciation, macroevolution and adaptive radiation.
- 2. Understand basic phylogenetic systematics.
- 3. Describe the phylogenetic relationships among the Phylum Chordata and Subphylum Vertebrata, discuss the characteristics unique to each group and demonstrate an understanding of how those characteristics relate to each group's evolution and current natural history.
- 4. Understand the evolutionary 'forces' and the selective advantages of the responding adaptations that characterize the different vertebrate lineages.
- 5. Demonstrate a basic understanding of issues surrounding the conservation and management of vertebrates.

# Evaluation Methods:

Student outcome will be assessed via two examinations, 5 brief journal summaries, and a comprehensive final exam. You have the option of writing a synthetic paper on a vertebrate topic acceptable with the instructor.

Exams will cover material presented in class along with textbook readings. Be aware there are a couple chapters you are to read but we will not directly discuss in class.

## Journal Exercise:

Students are required to submit 5 article summaries on some aspect of vertebrate biology from the <u>primary literature</u>. I have placed expectations for these assignments on Blackboard.

## **Optional Term paper:**

The optional paper will be worth 100 points and can be used to augment your grade. If you choose to write a term paper your final grade will be determined based on 450 pts.

The paper must include at least 8 primary source articles and have a text (not including Literature Cited) of 12 - 15 double-spaced pages.

If you chose to do a paper:

- 1. You must meet with me and have your topic approved by Wednesday, April 5<sup>th</sup>.
- 2. By 5 pm on Wednesday, April 5<sup>th</sup> you must provide me with a prospective title, a brief (preliminary) outline demonstrating preliminary exploration of your topic, and a list of at least 3 relevant primary articles you plan to use.

Further expectations for the paper are provided on Blackboard.

## Grading:

Course grades will be determined by performance on the following assignments:

| If you choose not to write the optional paper:                                   |               |  |  |  |
|----------------------------------------------------------------------------------|---------------|--|--|--|
| Journal Exercises (5)                                                            | 10 pts each   |  |  |  |
| Exams I – II                                                                     | 100 pts. each |  |  |  |
| Comprehensive Final Exam                                                         | 100 pts.      |  |  |  |
| TOTAL                                                                            | 350 pts.      |  |  |  |
| If you choose to write the optional paper:<br>Journal Exercises (5) 10 pts. each |               |  |  |  |
| Exams I – II                                                                     | 100 pts. each |  |  |  |
| Comprehensive Final Exam                                                         | 100 pts.      |  |  |  |
| Optional Term Paper                                                              | 100 pts.      |  |  |  |
| TOTAL                                                                            | 450 pts.      |  |  |  |

Grades will be determined by dividing the total points earned by the total points possible and multiplying by 100. Grade assignments are below:

| Percentage | Grade earned | Percentage | Grade earned |
|------------|--------------|------------|--------------|
| 94 - 100   | А            | 73 – 76    | С            |
| 90 - 93    | A-           | 70 - 72    | C-           |
| 87 - 89    | B+           | 66 - 69    | D+           |
| 83 - 86    | В            | 60 - 65    | D            |
| 80 - 82    | В-           | < 60       | F            |
| 77 - 79    | C+           |            |              |

## Student Responsibilities:

Students are responsible for all information presented in lecture, along with assigned readings. I have no tolerance for cheating. Students are expected to know and follow the University of Scranton policies concerning academic honesty.

#### Important Dates:

| Monday, 20 February | - Journal Exercise Due (Fish)              |
|---------------------|--------------------------------------------|
| Wednesday, 1 March  | – Exam #1                                  |
| Monday, 13 March    | - Journal Exercise Due (Amphibians)        |
| Wednesday, 29 March | - Journal Exercise Due (Reptiles)          |
| Wednesday, 5 April  | - Exam #2                                  |
| Wednesday, 5 April  | - Optional Paper Outline due               |
| Wednesday, 12 April | - First Day of Spring Break!               |
| Wednesday, 26 April | - Journal Exercise Due (Birds)             |
| Monday, 1 May       | - Optional Term Paper due                  |
| Exam Week           | - Comprehensive Final/Journal Exercise due |
|                     | (Mammals)                                  |

| Week<br>of | Торіс                                               | Reading          |
|------------|-----------------------------------------------------|------------------|
| 30 Jan     | Course introduction/evolution and natural selection | Chapter 1,2      |
| 6 Feb      | Vertebrate origins and phylogeny                    | Chapter 1, 2     |
| 13 Feb     | Vertebrate origins and phylogeny/Early vertebrates  | Chapter 3, 4     |
| 20 Feb     | Rise of the jawed vertebrates                       | Chapter 5        |
| 27 Feb     | Bony fishes                                         | Chapter 6        |
| 6 March    | Bony fishes/Life on land                            | Chapter 7,8      |
| 13         | Tetrapod origins                                    | Chapter 9        |
| March      |                                                     |                  |
| 20         | Amphibians                                          | Chapter 10       |
| March      |                                                     |                  |
| 27         | <b>Reptiles – turtles/crocodylians</b>              | Chapter 9, pages |
| March      |                                                     | 211-218          |
|            |                                                     | Chapter 12, 16   |
| 3 April    | Reptiles - lepidosaurs                              | Chapter 13       |
| 10 April   | Reptiles – lepidosaurs/archosaurs                   | Chapter 16       |
| 19 April   | Reptiles - archosaurs                               | Chapter 16       |
| 24 April   | Aves                                                | Chapter 16, 17   |
| 1 May      | Aves/Ectothermy vs. endothermy                      | Chapter 14, 22   |
| 8 May      | Mammals                                             | Chapter 18, 20   |
| 15 May     | Finals                                              | -                |

# **<u>Tentative</u>** Lecture Schedule