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Abstract

For two complex-valued harmonic functions f and F defined in the
open unit disk ∆ with f(0) = F (0) = 0, we say f is weakly subordinate to
F if f(∆) ⊂ F (∆). Furthermore, if we let E be a possibly infinite interval,
a function f : ∆ × E → C with f(·, t) harmonic in ∆ and f(0, t) = 0
for each t ∈ E is said to be a weak subordination chain if f(∆, t1) ⊂
f(∆, t2) whenever t1, t2 ∈ E and t1 < t2. In this paper, we construct a
weak subordination chain of convex univalent harmonic functions using a
harmonic de la Vallée Poussin mean and a modified form of Pommerenke’s
criterion for a subordination chain of analytic functions.

1 Introduction

For analytic functions f and g defined in the open unit disk ∆ with f(0) =
g(0) = 0, f is subordinate to g, written f ≺ g, if there exists an analytic function
ϕ : ∆ → C with ϕ(0) = 0 and |ϕ(z)| < 1, z ∈ ∆, such that f(z) = g(ϕ(z)). A
natural extension of subordination to complex-valued harmonic functions f and
F in ∆ with f(0) = F (0) = 0 is to say f is subordinate to F if f(z) = F (ϕ(z))
where ϕ is analytic in ∆, |ϕ(z)| < 1, z ∈ ∆, and ϕ(0) = 0. See [8] for results
relating to this definition. There are a few limitations to this definition because
ϕ must be analytic to preserve harmonicity and, even if f(∆) ⊂ F (∆) and F
is one-to-one, such a ϕ may not exist as is the case for analytic functions. If f
and F are harmonic functions on ∆ with f(0) = F (0) = 0, we say f is weakly
subordinate to F if f(∆) ⊂ F (∆). Furthermore, if we let E be a possibly infinite
interval, a function f : ∆ × E → C with f(·, t) harmonic in ∆ and f(0, t) = 0
for each t ∈ E is said to be a weak subordination chain if f(∆, t1) ⊂ f(∆, t2)
whenever t1, t2 ∈ E and t1 < t2. In this paper, we will construct a weak
subordination chain of convex univalent harmonic functions.

Every complex-valued harmonic function f in ∆ with f(0) = 0 can be
uniquely represented as f = h + g where h and g are analytic in ∆ and
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h(0) = g(0) = 0. In addition, f(z) = f(x + iy) = u(x, y) + iv(x, y) is sense-
preserving if the Jacobian, Jf , of the mapping (x, y) 7→ (u, v) is positive. The
function f is locally univalent if Jf never vanishes in ∆. By a result of Lewy [3]
a harmonic mapping f : ∆ → C of the form f = h+ g, is locally univalent and
sense-preserving if, and only if, |g′(z)| < |h′(z)| for all z ∈ ∆. In this case, we
simply say f is locally univalent. In addition, we say f is univalent if f is one-
to-one and sense-preserving in ∆. Let SH be the family of harmonic univalent
functions in ∆ of the form f = h + g with h(0) = g(0) = 0 and h′(0) = 1. Let
KH be the set of functions in SH such that f(∆) is convex. We will simply say
f is convex if f(∆) is convex.

Let f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n be analytic in ∆. Then the
function f ∗g given by (f ∗g)(z) =

∑∞
n=0 anbnz

n is called the Hadamard product
of f and g. Let H0(∆) be the set of analytic functions in ∆ with f(0) = 0. For
f ∈ H0, f ∗ I = f where I is the half-plane mapping

I(z) =
z

1− z
. (1)

In [4], Pólya and Schoenberg studied the shape-preserving properties of the
de la Vallée Poussin means. Define

Vn(z) =
1(
2n
n

) n∑
k=1

(
2n

n+ k

)
zk, n ∈ N, z ∈ ∆.

For f ∈ H0(∆), Vn ∗ f is the nth de la Vallée Poussin mean of f . In 2003,
Ruscheweyh and Suffridge [7] proved Vn satisfies the differential equation

zV ′
λ(z) + λ

1− z

1 + z
Vλ(z) = λ

z

1 + z
, Vλ(0) = 0 (2)

when λ = n. Furthermore, the differential equation has analytic solutions for
λ > 0, and the solutions form a continuous extension of the de la Vallée Poussin
means. Let K denote the set of convex univalent functions in H0(∆) with
f ′(0) = 1. Ruscheweyh and Suffridge [7] proved the following theorem involving
a convex subordination chain resolving a conjecture of Pólya and Schoenberg
posed in [4].

Theorem 1 (Ruscheweyh, Suffridge). For f ∈ K, we have ((λ+1)/λ)Vλ∗f ∈ K,
for all λ > 0. Furthermore,

Vλ1 ∗ f ≺ Vλ2 ∗ f ≺ f, 0 < λ1 < λ2.

In particular, Vλ1 ≺ Vλ2 ≺ I, 0 < λ1 < λ2 where I is given by equation (1)
and in fact, this special case implies the truth of Theorem 1. See [6].

If f ∈ H0(∆) and F = H + G is a harmonic function in ∆ with F (0) = 0,
then the Hadamard product or convolution of f and F is defined as

f ∗̃ F = f ∗H + f ∗G
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Figure 1: V1 ∗̃ ℓ0(∆) ̸⊂ V2 ∗̃ ℓ0(∆)

where f∗F and f∗G are the usual Hadamard products of two analytic functions.
Then Vλ ∗̃ F is the harmonic de la Vallée Poussin mean of F . We have the
following result of Ruscheweyh and Suffridge [7] regarding harmonic de la Vallée
Poussin means and their shape-preserving property.

Theorem 2 (Ruscheweyh, Suffridge). For λ ≥ 1/2, if F is a convex univalent
harmonic function in ∆, then so is Vλ ∗̃ F , and Vλ ∗̃ F (∆) ⊂ F (∆).

The half-plane mapping

ℓ0(z) =
1

2

(
z

1− z
+

z

(1− z)2

)
+

1

2

(
z

1− z
− z

(1− z)2

)
=

I(z) + zI ′(z)

2
+

I(z)− zI ′(z)

2

is convex univalent and harmonic in ∆ (see [1]) and is the harmonic analogue to
the analytic half-plane mapping I given by (1). One might hope that at least the
mapping (z, λ) 7→ Vλ ∗̃ℓ0 would form a weak subordination chain paralleling the
analytic case. Unfortunately V1 ∗̃ℓ0(∆) ̸⊂ V2 ∗̃ℓ0(∆) (see [7]) which is illustrated
in Figure 1 and Figure 2. Therefore, even a weak subordination chain result as
in Theorem 1 does not hold for every convex harmonic function. However, by
adjusting Vλ ∗̃ ℓ0 we construct a weak subordination chain of convex univalent
harmonic functions.
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Figure 2: Above is a partial graph of V1 ∗̃ ℓ0(eiθ) and V2 ∗̃ ℓ0(eiθ).

2 A Weak Subordination Chain of Convex Uni-
valent Harmonic Functions

Define F : ∆× [1/2,∞) → C by

F (z, λ) =
Vλ(z) + cλzV

′
λ(z)

1 + cλ
+

Vλ(z)− cλzV
′
λ(z)

1 + cλ
(3)

where cλ > 0 for each λ ∈ [1/2,∞). Observe that if cλ = 1 for all λ ≥ 1/2,
then F (z, λ) = (Vλ ∗̃ ℓ0)(z). If we let cλ become unbounded in equation (3),
Vλ(z)/(1 + cλ) is approaching the zero function while (cλzV

′
λ(z))/(1 + cλ) is

approaching zV ′
λ(z), a starlike function. Surprisingly, however, the functions

F (·, λ) form a family of convex univalent harmonic functions for cλ > 0, which
is formally stated below.

Theorem 3. For each λ ≥ 1/2 and cλ > 0, ((λ+ 1)/λ)F (·, λ) ∈ KH .

In the proof of Theorem 3, which is given in the next section, we use the
fact that the functions F (·, λ) can be realized as harmonic de la Vallée Poussin
means of a convex harmonic function. That is, the function F can be written
as

F (z, λ) = (Vλ ∗̃ Iλ) (z)
where

Iλ(z) =
I(z) + cλzI

′(z)

1 + cλ
+

I(z)− cλzI
′(z)

1 + cλ
, z ∈ ∆, λ ≥ 1/2, cλ > 0 (4)
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Figure 3: Let cλ = 1 + 1/λ. Above are the graphs of F (eiθ, λ), λ = 1, 2, 3, 4.

and I is given by (1). In the proof of Theorem 3, it is shown that Iλ is a
convex harmonic half-plane mapping, and therefore, by Theorem 2, we have the
following corollary.

Corollary 4. For each λ ≥ 1/2 and cλ > 0, F (∆, λ) ⊂ Iλ(∆).

Next, for λ ≥ 1 and a specific choice of cλ in (3), we construct a convex
univalent weak subordination chain. See Figure 3 for an illustration.

Theorem 5. If cλ = 1+ 1/λ and λ ≥ 1, F is a convex univalent weak subordi-
nation chain.

Notice for cλ = 1 + 1/λ, F tends to ℓ0 as λ → ∞. As can be seen in
the next section, the proof of Theorem 5 is complicated by the involvement of
the Gamma and Psi functions. We believe in fact that F (∆, λ1) ⊂ F (∆, λ2) for
1/2 ≤ λ1 < λ2 when cλ = 1+1/λ. Furthermore, whether there are other choices
of cλ for which F is a weak subordination chain remains an open question.

3 Proofs

Proof of Theorem 3. Let λ ≥ 1/2 be fixed and cλ > 0. Recall F (z, λ) =
(Vλ ∗̃ Iλ) (z) where F is given by equation (3) and Iλ is given by equation (4).
By Theorem 2, to show F (·, λ) is convex, it suffices to show that Iλ ∈ KH . To
do this, we will perform a change of variable. Substituting u = (1 + z)/(1− z)
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into Iλ, we can study the image Iλ(z) as z varies in ∆ by studying g(u) as
u = x+ iy varies in the right-half plane where

Re g(u) =
1

1 + cλ
Re(u− 1) =

1

1 + cλ
(x− 1)

and

Im g(u) =
2

1 + cλ
Im

(
1

4
(u2 − 1)

)
=

1

1 + cλ
xy.

Setting x = 0, we see that g takes the unit circle except z = 1 to the point
(−1/(1 + cλ), 0). Setting x = k > 0, we see that for the fixed real value of
(k − 1)/(1 + cλ), g will will take on all imaginary values. Thus, g maps the
open right-half plane into the half-plane {w : Rew > −1/(1 + cλ)}. To see
that Iλ is one-to-one, suppose there exist u1 = x1 + iy1 and u2 = x2 + iy2 with
x1, x2 > 0 such that g(u1) = g(u2). By the above work, this implies x1 = x2

which in turn implies y1 = y2. Since Iλ is one-to-one, it is either sense-preserving
or sense-reversing on the entire disk ∆. Write Iλ = Hλ + Gλ. Then H ′

λ(0) =
I ′(0) = 1 and G′

λ(0) = (1− cλ)/(1+ cλ)I
′(0) = (1− cλ)/(1+ cλ). Consequently,

|G′
λ(0)| < |H ′

λ(0)| when cλ > 0, and Iλ is sense-preserving. Finally, since
Hλ(0) = Gλ(0) = 0 and H ′

λ(0) = 1, Iλ ∈ KH .

To prove Theorem 5, we require a modified form of Pommerenke’s criterion
[5] for a subordination chain of analytic functions to apply to a weak subordi-
nation chain of harmonic functions.

Theorem 6. Let a < b and f : ∆ × [a, b] → C. Suppose f(·, t) is harmonic
on ∆, univalent in ∆, and f(0, t) = 0 for each t ∈ [a, b]. Further, assume
f(z, ·) ∈ C1[a, b] for each z ∈ ∆. Write f(z, t) = h(z, t) + g(z, t). If p(z, t) given
by

∂f(z, t)

∂t
= p(z, t)

(
z
∂h(z, t)

∂z
− z

∂g(z, t)

∂z

)
, |z| = 1, t ∈ [a, b]

has Re p(z, t) > 0, |z| = 1, t ∈ [a, b], then f is a weak subordination chain.

Proof. For z fixed, |z| = 1, we can think of f(z, t) as the path of a particle. The
vector given by [∂f/∂t](z, t) represents the velocity; while,

z
∂h(z, t)

∂z
− z

∂g(z, t)

∂z

for |z| = 1 is the normal. If Re p(z, t) > 0 for |z| = 1 and each t ∈ [a, b], then the
velocity vector and the normal must be within π/2 of one another for every z,
|z| = 1. This implies that the direction of the velocity vector at every boundary
point of {f(z, t) : |z| ≤ 1} is toward the exterior of the set. Let s ∈ [a, b). Then
for any ε, 0 < ε ≤ b− s, f(∆, s) ⊂ f(∆, s+ ε), and hence, f(∆, s) ⊂ f(∆, t) for
all s and t such that a ≤ s < t ≤ b.

The following lemmas are needed for the proof of Theorem 5.
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Lemma 7. For λ ≥ 1,

− log 2 < log
λ+ 1

2λ+ 1
+

1

2λ+ 1
− 1

λ+ 1
≤ Ψ(λ+ 1)−Ψ(2λ+ 1) ≤ log

λ+ 1

2λ+ 1

where Ψ(z) is the digamma function.

Proof. Since

Ψ(z) = −γ − 1

z
−

∞∑
n=1

(
1

z + n
− 1

n

)
where γ is the Euler-Mascheroni constant,

Ψ(λ+ 1)−Ψ(2λ+ 1) =
∞∑

n=0

(
1

2λ+ 1 + n
− 1

λ+ 1 + n

)
=

∞∑
n=0

f(n).

Then f(t) = 1/(2λ+ 1 + t)− 1/(λ+ 1 + t) is an increasing function of t and is
negative for t ≥ 0 and λ ≥ 1. Therefore, for λ ≥ 1,

Ψ(λ+ 1)−Ψ(2λ+ 1) ≤
∫ ∞

0

f(t) dt = log

(
λ+ 1

2λ+ 1

)
.

Similarly, we conclude

Ψ(λ+ 1)−Ψ(2λ+ 1) =
1

2λ+ 1
− 1

λ+ 1
+

∞∑
n=1

f(n)

≥ 1

2λ+ 1
− 1

λ+ 1
+ log

(
λ+ 1

2λ+ 1

)
> − log 2.

Lemma 8. For λ ≥ 1,

Ψ′(λ+1)−2Ψ′(2λ+1) <
1

λ+ 1
+

1

2(λ+ 1)2
+

1

6(λ+ 1)3
− 2

(2λ+ 1)
− 1

(2λ+ 1)2

(5)
and Ψ(λ+ 1)−Ψ(2λ+ 1) is decreasing.

Proof. In [2], it is shown for x > 0,

1

x
+

1

2x2
< Ψ′(x) <

1

x
+

1

2x2
+

1

6x3

and inequality (5) follows immediately from this. The fact that Ψ(λ+1)−Ψ(2λ+
1) is decreasing follows from the fact that the right hand side of inequality (5)
is

−6λ3 + 20λ2 + 23λ+ 8

6(λ+ 1)3(2λ+ 1)2

and this quantity is clearly negative when λ is positive.
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The function f2(x, λ), x = cos θ, given in the following lemma, occurs in the
proof of Theorem 5.

Lemma 9. Define f2 : (−1, 1]× [1,∞) → R by

f2(x, λ) =
1

λ
− 2

2λ+ 1
+ log 2

+ 2(Ψ(λ+ 1)−Ψ(2λ+ 1)) + log(1 + x) + (1− x)
λ

1 + λ
. (6)

For λ ≥ 1, f2(1− 1/λ, λ) is decreasing.

Proof. Let g(λ) = f2(1 − 1/λ, λ). Then using inequality (5) in Lemma 8 we
have

g′(λ) = − 1

λ2
+

4

(2λ+ 1)2
+ 2(Ψ′(λ+ 1)− 2Ψ′(2λ+ 1)) +

1

λ(2λ− 1)
− 1

(1 + λ)2

< − 1

λ2
+

2

(2λ+ 1)2
+

2

λ+ 1
+

1

3(λ+ 1)3
− 4

2λ+ 1
+

1

λ(2λ− 1)

=
−24λ6 − 46λ5 − 23λ4 + 22λ3 + 35λ2 + 18λ+ 3

3λ2(2λ+ 1)2(λ+ 1)3(2λ− 1)
. (7)

Clearly, the right hand side of (7) is negative for λ ≥ 1. Thus, f2(1− 1/λ, λ) is
decreasing for λ ≥ 1.

Proof of Theorem 5. Let λ ≥ 1 and cλ = 1 + 1/λ. For this choice of cλ, it is
clear by Theorem 3 that F (·, λ) given by Eq. (3) is a convex univalent harmonic
function in ∆ for each λ ≥ 1. We will use Theorem 6 to show F given by
equation (3) is a weak subordination chain. Using differential equation (2), we
can express F in terms of Vλ as

F (z, λ) =
λVλ(z) + (λ+ 1)zV ′

λ(z)

2λ+ 1
+

λVλ(z)− (λ+ 1)zV ′
λ(z)

2λ+ 1

=
2λ

2λ+ 1
Re (Vλ(z)) + 2iλ

λ+ 1

2λ+ 1
Im

(
z

1 + z
− 1− z

1 + z
Vλ(z)

)
.

Clearly, F (z, ·) ∈ C1[1,∞) for each z ∈ ∆ and F (0, λ) = 0 for each λ ≥ 1. Since
Vλ extends continuously into ∆ (see [7]), we can apply Theorem 6 to F .

To begin, we will first find a simplified expression for [∂F/∂λ](eiθ, λ), and
the normal to F (eiθ, λ). From [7], it is known that

ReVλ

(
eiθ
)
= −1

2
+ 2λ−1 Γ

2(λ+ 1)

Γ(2λ+ 1)
(1 + cos θ)λ, θ ∈ R.

For z = eiθ,

Im

(
z

1 + z
− 1− z

1 + z
Vλ(z)

)
=

sin θ

1 + cos θ
2λ−1 Γ

2(λ+ 1)

Γ(2λ+ 1)
(1 + cos θ)λ.
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Define

p(θ, λ) =
λ

2λ+ 1
2λ

Γ2(λ+ 1)

Γ(2λ+ 1)
(1 + cos θ)λ−1.

Thus,

F
(
eiθ, λ

)
= − λ

2λ+ 1
+ p(θ, λ) (1 + cos θ + i(λ+ 1) sin θ) .

Therefore,

∂F

∂λ

(
eiθ, λ

)
= − 1

(2λ+ 1)2

+ p(θ, λ)

[(
1

λ(2λ+ 1)
+ log 2 + 2(Ψ(λ+ 1)−Ψ(2λ+ 1))

+ log(1 + cos θ)

)(
1 + cos θ + i(λ+ 1) sin θ

)
+ i sin θ

]
. (8)

and

∂

∂θ
F
(
eiθ, λ

)
= p(θ, λ)

(
−i(λ2 − 1) + iλ(λ+ 1) cos θ − λ sin θ

)
. (9)

To apply Theorem 6, it is equivalent to show

(1− λ2 + λ(1 + λ) cos θ)2 + λ2 sin2 θ

1 + λ
Re

(
i[∂F/∂λ](eiθ, λ)

[∂/∂θ](F (eiθ, λ))

)
> 0, (10)

Letting x = cos θ and for x ∈ (−1, 1], we can write the left side of (10) as
f1(x, λ) + (1 + x)f2(x, λ) where f1 : (−1, 1]× [1,∞) → R is

f1(x, λ) =
λ− 1− λx

λ(2λ+ 1)2λ
Γ2(λ+ 1)

Γ(2λ+ 1)
(1 + x)λ−1

and f2 is given by equation (6). Observe for λ ≥ 1,

lim
x→−1+

(f1(x, λ) + (1 + x)f2(x, λ)) = ∞.

Thus, to complete the proof of Theorem 5, we will show f1(x, λ)+(1+x)f2(x, λ) >
0 for −1 < x ≤ 1 and λ ≥ 1 via the following steps. See Figure 4 and Figure 5
for graphs of f1(x, λ) + (1 + x)f2(x, λ).

Step 1. Let λ ≥ 1 and −1 < x ≤ −1/2. Set

G(x, λ) = (2λ+ 1)2λ
Γ2(λ+ 1)

Γ(2λ+ 1)
(1 + x)λ−1.

By Lemma 7

1

G(x, λ)

∂G

∂λ
(x, λ) =

2

2λ+ 1
+ log 2 + 2(Ψ(λ+ 1)−Ψ(2λ+ 1)) + log(1 + x)

≤ 2

3
+ log 2 + 2 log

(
2

3

)
+ log(1 + x).
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Figure 4: Above is the graph of f1(x, λ) + (1 + x)f2(x, λ) for x ∈ (−1, 1] and
λ ∈ [1, 20].
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Therefore, if log(1+x) < −2/3−log (8/9) or equivalently if x < (9/8)e−2/3−1 ≈
−0.42 fixed, G(x, λ) is a decreasing function of λ. Thus,

f1(x, λ) ≥
λ− 1− λx

λG(x, 1)
≥ −x

3
.

Now, set H(x) = −x/3 + (1 + x) log(1 + x). Since H is a decreasing function
when x < e−2/3 − 1 ≈ −0.49, H(x) ≥ H(−1/2). For λ ≥ 1 and −1 < x ≤ 1,
define

q(x, λ) =
1

λ
− 2

1 + λ
+ log 2+2 log

(
λ+ 1

2λ+ 1

)
+ log(1+x)+ (1−x)

λ

1 + λ
. (11)

By Lemma 7, for λ ≥ 1 and −1 < x ≤ 1,

f2(x, λ) ≥ q(x, λ).

Also, observe both f2 and q are increasing functions of x if −1 < x ≤ 1/λ and
decreasing otherwise for λ ≥ 1 fixed.

Next, we will use the fact that

λ2(1 + λ)2(2λ+ 1)
∂q

∂λ

(
− 9

20
, λ

)
=

29

10
λ3 − 71

20
λ2 − 4λ− 1

has a zero at λ = 2 that gives a minimum for q(−9/20, λ). Since λ(1− x)/(1 +
λ) ≥ λ(1 + 9/20)/(1 + λ), to show f1(x, λ) + (1 + x)f2(x, λ) > 0 in this step, it
suffices to show

H

(
−1

2

)
+ (1 + x)

[
q

(
− 9

20
, λ

)
− log

(
11

20

)]
> 0.

Using the observation about q above,

(1 + x)

[
q

(
− 9

20
, λ

)
− log

(
11

20

)]
≥
(
1

2

)[
q

(
− 9

20
, 2

)
− log

(
11

20

)]
and consequently,

H

(
−1

2

)
+ (1 + x)

[
q

(
− 9

20
, λ

)
− log

(
11

20

)]
> 0.07.

Step 2. Let λ ≥ 1 and −1/2 ≤ x ≤ 0. Set

J(λ) = 2λ
Γ2(λ+ 1)

Γ(2λ+ 1)
.

By Lemma 7,

J ′(λ)

J(λ)
= log 2 + 2(Ψ(λ+ 1)−Ψ(2λ+ 1)) ≤ log 2 + 2 log

(
2

3

)
< 0.

11



Therefore,

f1(x, λ) =
λ− 1− λx

λ(2λ+ 1)J(λ)(1 + x)λ−1
≥ λ− 1− λx

λ(2λ+ 1)
.

Thus, to complete this step, it suffices to show

K(x, λ) =
λ− 1− λx

λ(2λ+ 1)
+ (1 + x)q(x, λ) > 0

where q is given by equation (11). We will show for a fixed λ ≥ 1, K(x, λ) is an
increasing function of x when −1/2 ≤ x ≤ 0 and K(−1/2, λ) > 0 for λ ≥ 1.

To do this, let λ ≥ 1 be fixed and we see that

∂K

∂x
(x, λ) = − 1

2λ+ 1
+ q(x, λ) + (1 + x)

∂q

∂x
(x, λ)

and
∂2K

∂x2
(x, λ) = 2

∂q

∂x
(x, λ) + (1 + x)

∂2q

∂x2
(x, λ) =

1

1 + x
− 2λ

1 + λ
.

Hence, ∂2K/∂x2 changes sign at most once for −1/2 ≤ x ≤ 0 and λ ≥ 1. It is
a simple calculation to show [∂2K/∂x2](−1/2, λ) > 0 and [∂2K/∂x2](0, λ) ≤ 0
for λ ≥ 1. Thus, [∂K/∂x](x, λ) has at most one maximum in −1/2 ≤ x ≤ 0,
and since [∂K/∂x](−1/2, λ) > 0 and [∂K/∂x](0, λ) > 0 for λ ≥ 1, K(x, λ) is an
increasing function of x for −1/2 ≤ x ≤ 0 and λ ≥ 1 fixed.

To complete the case with −1/2 ≤ x ≤ 0, by elementary calculus, we have
K(−1/2, λ) is a decreasing function for λ ≥ 1 and limλ→∞ K(−1/2, λ) > 0.
Thus, K(−1/2, λ) > 0 for λ ≥ 1.

Step 3. Let 1 ≤ λ ≤ 2 and 0 ≤ x ≤ 1− 1/λ. For 0 ≤ x ≤ 1− 1/λ, f1(x, λ) ≥ 0.
Also, for 1 ≤ λ ≤ 2, 1− 1/λ ≤ 1/λ, and thus, f2(x, λ) ≥ q(x, λ) ≥ q(0, λ) where
q is given by (11). Therefore, all that remains to be proved for this case is that
q(0, λ) > 0. Define

P (λ) = λ2(1 + λ)2(2λ+ 1)
∂q

∂λ
(0, λ) = 2λ3 − 4λ2 − 4λ− 1.

Then P ′′(λ) > 0 when λ > 2/3, and P (1) and P (2) are negative. Therefore,
P (λ) < 0 for 1 ≤ λ ≤ 2 and q(0, λ) is a decreasing function of λ on this interval.
Since q(0, 2) > 0.17, we have the desired result.

Step 4. Let 1 ≤ λ ≤ 2 and 1− 1/λ ≤ x ≤ 1/λ. Since x ≥ 1− 1/λ, f1(x, λ) ≤ 0.
Also,

−1− λ+ λx

(1 + x)λ−1
≥ − x

(1 + x)λ−1
≥ −1,

Let

R(λ) = λ(2λ+ 1)2λ
Γ2(λ+ 1)

Γ(2λ+ 1)
.

Then
R′(λ)

R(λ)
=

4λ+ 1

λ(2λ+ 1)
+ log 2 + 2(Ψ(λ+ 1)−Ψ(2λ+ 1))

12



which is decreasing for 1 ≤ λ ≤ 2 by Lemma 8. Thus,

R′(λ)

R(λ)
≥ R′(2)

R(2)
> 0.42.

Therefore, since R(λ) > 0 for 1 ≤ λ ≤ 2, R is increasing and we have

f1(x, λ) = −1− λ+ λx

(1 + x)λ−1

1

R(λ)
≥ − 1

R(1)
= −1

3
.

Since f2(x, λ) is a an increasing function of x for x ≤ 1/λ, by Lemma 9,

f1(x, λ) + (1 + x)f2(x, λ) ≥ −1

3
+ f2(1− 1/λ, λ)

≥ −1

3
+ f2(1/2, 2)

= −16

5
+ log

3

4
> 0.03.

Step 5. Let λ ≥ 2 and 0 ≤ x ≤ 1/λ. For these values of λ, 1/λ ≤ 1 − 1/λ
and f1(x, λ) ≥ 0. Also, f2(x, λ) is an increasing function of x when x ≤ 1/λ.
Therefore, to complete this step, it suffices to show f2(0, λ) > 0. By Lemma 7,
we have

f2(0, λ) =
1

λ
− 2

2λ+ 1
+ log 2 + 2(Ψ(λ+ 1)−Ψ(2λ+ 1)) +

λ

1 + λ

≥ 1

λ
− 2

2λ+ 1
+

λ

λ+ 1
− log 2. (12)

Define S(λ) to be the right side of (12). Then λ2(2λ + 1)2(λ + 1)2S′(λ) =
4λ4 − 8λ2 − 6λ− 1 > 0 for λ ≥ 2. Thus, f2(0, λ) ≥ S(λ) ≥ S(2) > 0.07

Step 6. Let λ ≥ 2 and 1/λ ≤ x ≤ 1 − 1/λ. For these values of x, f1(x, λ) ≥ 0.
Thus, it suffices to show f2(x, λ) > 0. For these values of x, f2(x, λ) is a
decreasing function of x. Hence f2(x, λ) ≥ f2(1 − 1/λ, λ) and by Lemma 9,
f2(1 − 1/λ, λ) is decreasing. Since limλ→∞ f2(1 − 1/λ, λ) = 0, we see f2(1 −
1/λ, λ) > 0.

Step 7. Lastly, let λ ≥ 2 and 1−1/λ ≤ x ≤ 1. In this case, f1(x, λ) and f2(x, λ)
are decreasing functions of x. Therefore, by Lemma 7, f2(x, λ) ≥ f2(1, λ) ≥
1/λ− 1/(2λ+ 1) > 0. Thus,

f1(x, λ) + (1 + x)f2(x, λ) ≥ f1(1, λ) +
1

λ
− 2

2λ+ 1

=

−2 + 4λ
Γ2(λ+ 1)

Γ(2λ+ 1)

λ(2λ+ 1)4λ
Γ2(λ+ 1)

Γ(2λ+ 1)

. (13)

13



Define T (λ) to be the numerator of the right side of (13). To complete this case,
it suffices to show T (λ) > 0. By Lemma 7,

T ′(λ) = 4λ
2Γ2(λ+ 1)

Γ(2λ+ 1)
(log 2 + Ψ(λ+ 1)−Ψ(2λ+ 1)) > 0,

and so T (λ) ≥ T (2) = 2/3.

Thus, for λ ≥ 1 and −1 < x ≤ 1, f1(x, λ) + (1 + x)f2(x, λ) > 0 and by
Theorem 6, we have F (∆, λ1) ⊂ F (∆, λ2) whenever 1 ≤ λ1 < λ2.
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