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Abstract

For two complex-valued harmonic functions f and F' defined in the
open unit disk A with f(0) = F(0) = 0, we say f is weakly subordinate to
Fif f(A) C F(A). Furthermore, if we let E be a possibly infinite interval,
a function f : A x E — C with f(-,¢) harmonic in A and f(0,¢) = 0
for each t € E is said to be a weak subordination chain if f(A,¢;) C
f(A,t2) whenever t1,t2 € E and t1 < t2. In this paper, we construct a
weak subordination chain of convex univalent harmonic functions using a
harmonic de la Vallée Poussin mean and a modified form of Pommerenke’s
criterion for a subordination chain of analytic functions.

1 Introduction

For analytic functions f and g defined in the open unit disk A with f(0) =
g(0) = 0, f is subordinate to g, written f < g, if there exists an analytic function
¢ : A — C with ¢(0) = 0 and |¢p(2)] < 1, z € A, such that f(2) = g(¢(2)). A
natural extension of subordination to complex-valued harmonic functions f and
F in A with f(0) = F(0) =0 is to say f is subordinate to F' if f(z) = F(¢(z))
where ¢ is analytic in A, |¢(z)] < 1, z € A, and ¢(0) = 0. See [8] for results
relating to this definition. There are a few limitations to this definition because
¢ must be analytic to preserve harmonicity and, even if f(A) C F(A) and F
is one-to-one, such a ¢ may not exist as is the case for analytic functions. If f
and F are harmonic functions on A with f(0) = F(0) = 0, we say f is weakly
subordinate to F if f(A) C F(A). Furthermore, if we let E be a possibly infinite
interval, a function f : A x E — C with f(-,¢) harmonic in A and f(0,¢) =0
for each t € F is said to be a weak subordination chain if f(A,t1) C f(A,t2)
whenever t1,to € E and t; < t3. In this paper, we will construct a weak
subordination chain of convex univalent harmonic functions.

Every complex-valued harmonic function f in A with f(0) = 0 can be
uniquely represented as f = h + g where h and g are analytic in A and
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h(0) = g(0) = 0. In addition, f(z) = f(x + iy) = u(x,y) + iv(z,y) is sense-
preserving if the Jacobian, J;, of the mapping (z,y) + (u,v) is positive. The
function f is locally univalent if J; never vanishes in A. By a result of Lewy [3]
a harmonic mapping f : A — C of the form f = h + g, is locally univalent and
sense-preserving if, and only if, |¢'(z)| < |h/(2)] for all z € A. In this case, we
simply say f is locally univalent. In addition, we say f is univalent if f is one-
to-one and sense-preserving in A. Let Sy be the family of harmonic univalent
functions in A of the form f = h + g with h(0) = g(0) = 0 and A'(0) = 1. Let
K g be the set of functions in Sy such that f(A) is convex. We will simply say
f is convex if f(A) is convex.

Let f(z) = Y0 ganz"™ and g(z) = Yo7 b,2z™ be analytic in A. Then the
function fx*g given by (f#g)(z) = Y.~ anbpz" is called the Hadamard product
of f and g. Let H(A) be the set of analytic functions in A with f(0) = 0. For
f € Ho, f+I = f where [ is the half-plane mapping

I(z) = . (1)

In [4], Pélya and Schoenberg studied the shape-preserving properties of the
de la Vallée Poussin means. Define

n

_ b 20\
Vo(z) = (27?) ’;<n+k)z ) neN,zeA.

For f € Ho(A), V,, x f is the n'* de la Vallée Poussin mean of f. In 2003,
Ruscheweyh and Suffridge [7] proved V,, satisfies the differential equation

1—=2 z
V) =
1+ 2 82 142’

2Vi(z) + A VA(0) =0 (2)
when A\ = n. Furthermore, the differential equation has analytic solutions for
A > 0, and the solutions form a continuous extension of the de la Vallée Poussin
means. Let K denote the set of convex univalent functions in Ho(A) with
17(0) = 1. Ruscheweyh and Suffridge [7] proved the following theorem involving
a convex subordination chain resolving a conjecture of Pélya and Schoenberg
posed in [4].

Theorem 1 (Ruscheweyh, Suffridge). For f € K, we have (A+1)/A\)Vaxf € K,
for all A\ > 0. Furthermore,
Vi s f <V s f<f,  0<A <X

In particular, Vi, < Vi, < I, 0 < Ay < Ag where I is given by equation (1)
and in fact, this special case implies the truth of Theorem 1. See [6].

If f € Ho(A) and F = H + G is a harmonic function in A with F(0) = 0,
then the Hadamard product or convolution of f and F' is defined as

fiF=f+H+ G



Figure 1: V1 % £y(A) ¢ Vo % 4o(A)

where fxF and f*G are the usual Hadamard products of two analytic functions.
Then V) % F is the harmonic de la Vallée Poussin mean of F. We have the
following result of Ruscheweyh and Suffridge [7] regarding harmonic de la Vallée
Poussin means and their shape-preserving property.

Theorem 2 (Ruscheweyh, Suffridge). For A > 1/2, if F is a convex univalent
harmonic function in A, then so is V% F, and V) ¥ F(A) C F(A).

The half-plane mapping

Eo(Z)Z;(PZZJF(l_ZZp)JF;(liz_(l—ZZ)Q)

I(z)+ 2I'(2)  I(z2)—z2I'(2)
2 + 2

is convex univalent and harmonic in A (see [1]) and is the harmonic analogue to
the analytic half-plane mapping I given by (1). One might hope that at least the
mapping (z, A) — V) %£y would form a weak subordination chain paralleling the
analytic case. Unfortunately Vi #£o(A) ¢ Va%£€y(A) (see [7]) which is illustrated
in Figure 1 and Figure 2. Therefore, even a weak subordination chain result as
in Theorem 1 does not hold for every convex harmonic function. However, by
adjusting Vi * fp we construct a weak subordination chain of convex univalent
harmonic functions.
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Figure 2: Above is a partial graph of V; % £5(e?) and V; % £y(e??).

2 A Weak Subordination Chain of Convex Uni-
valent Harmonic Functions

Define F': A x [1/2,00) — C by

Va(z) + exzVi(z) =~ Va(z) — exzVi(2) 3)
1+ cy 1+ ¢y

where ¢y > 0 for each A € [1/2,00). Observe that if ¢y = 1 for all A > 1/2,
then F(z,A) = (V) % £y)(2). If we let ¢y become unbounded in equation (3),
Va(2)/(1 + ¢y) is approaching the zero function while (cxzV{(2))/(1 + ca) is
approaching zVJ(z), a starlike function. Surprisingly, however, the functions
F(-,\) form a family of convex univalent harmonic functions for ¢y > 0, which
is formally stated below.

Theorem 3. For each A >1/2 and ¢y >0, (A+1)/NF(,\) € Kg.

In the proof of Theorem 3, which is given in the next section, we use the
fact that the functions F'(-, A) can be realized as harmonic de la Vallée Poussin
means of a convex harmonic function. That is, the function F' can be written
as

F(z,\) =

F(Z7)\) = (V)\ ¥ I)\) (Z)

I(z) + exzI'(z)  1(z) —cxzl'(z)
o 1+ecy 1+cy

, z€AAXN>1/2,c>0 (4)
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Figure 3: Let cy = 1+ 1/)\. Above are the graphs of F(e? \), A =1, 2, 3, 4.

and I is given by (1). In the proof of Theorem 3, it is shown that Iy is a
convex harmonic half-plane mapping, and therefore, by Theorem 2, we have the
following corollary.

Corollary 4. For each A > 1/2 and ¢y > 0, F(A, ) C I\(A).

Next, for A > 1 and a specific choice of ¢y in (3), we construct a convex
univalent weak subordination chain. See Figure 3 for an illustration.

Theorem 5. Ifcy =1+1/A and A > 1, F is a convex univalent weak subordi-
nation chain.

Notice for ¢y = 1+ 1/A, F tends to ¢5 as A — oo. As can be seen in
the next section, the proof of Theorem 5 is complicated by the involvement of
the Gamma and Psi functions. We believe in fact that FI(A, A1) C F(A, \g) for
1/2 < A1 < Ay when ¢\ = 14+1/\. Furthermore, whether there are other choices
of ¢ for which F' is a weak subordination chain remains an open question.

3 Proofs

Proof of Theorem 8. Let A > 1/2 be fixed and ¢y > 0. Recall F(z,\) =
(Vy % I)) (z) where F is given by equation (3) and T, is given by equation (4).
By Theorem 2, to show F'(-,\) is convex, it suffices to show that I, € Kg. To
do this, we will perform a change of variable. Substituting v = (1 + 2)/(1 — 2)



into Iy, we can study the image I(z) as z varies in A by studying g(u) as
u = x + 1y varies in the right-half plane where

1

Reg(u) = o

Re(u —1) =

(z—1)

1+cy

and

2 1, , 1
Img(u) = e Im (4(u 1)) = 1+C)\xy.
Setting x = 0, we see that g takes the unit circle except z = 1 to the point
(=1/(14¢x),0). Setting z = k > 0, we see that for the fixed real value of
(k—=1)/(1 + cy), g will will take on all imaginary values. Thus, g maps the
open right-half plane into the half-plane {w : Rew > —1/(1 + ¢)\)}. To see
that I is one-to-one, suppose there exist u; = 1 4+ iy; and uy = x9 + iy» with
x1,x2 > 0 such that g(u1) = g(ug). By the above work, this implies 1 = x5
which in turn implies y; = yo. Since I is one-to-one, it is either sense-preserving
or sense-reversing on the entire disk A. Write I, = H) + G,. Then H{(0) =
I'(0) =1 and G4(0) = (1 —cn)/(1+cx)I'(0) = (1 —cn)/(1 +¢y). Consequently,
|G5(0)] < |HL(0)] when ¢y > 0, and I, is sense-preserving. Finally, since
H)\(O):GA(O):OaHd Hf\(()):l, I, eKy. O

To prove Theorem 5, we require a modified form of Pommerenke’s criterion
[5] for a subordination chain of analytic functions to apply to a weak subordi-
nation chain of harmonic functions.

Theorem 6. Let a < b and f : A x [a,b] = C. Suppose f(-,t) is harmonic
on A, univalent in A, and f(0,t) = 0 for each t € [a,b]. Further, assume
f(z,:) € Clla,b] for each = € A. Write f(z,t) = h(z,t) + g(z,t). If p(2,t) given
by

b 0 87

has Rep(z,t) >0, |z| =1, t € [a,b], then f is a weak subordination chain.

Proof. For z fixed, |z| = 1, we can think of f(z,t) as the path of a particle. The
vector given by [0f/0t](z,t) represents the velocity; while,

Oh(z,t)  0g(z,t)
¥ 0z — 0z

for |z| = 1is the normal. If Rep(z,t) > 0 for |z2| = 1 and each t € [a, b], then the
velocity vector and the normal must be within 7/2 of one another for every z,
|z| = 1. This implies that the direction of the velocity vector at every boundary
point of {f(z,t) : |z| < 1} is toward the exterior of the set. Let s € [a,b). Then
forany e, 0 <e <b—s, f(A,s) C f(A,s+¢), and hence, f(A,s) C f(A,t) for
all s and ¢t such that a < s <t <b. O

The following lemmas are needed for the proof of Theorem 5.



Lemma 7. For A > 1,

A+1 1 1 A+1
Clog2 <1 _ CUA+1) - TN+ 1) <1
og2 <log o+ oy — 3 SYAH D) - WA+ ) Slog o

where W(z) is the digamma function.

Proof. Since

\P(z):_y_i_ni:(z—lkn_i)

where v is the Euler-Mascheroni constant,

\IJ(A+1)_\I](2)‘+1):Z<2A+11+n_A+i+n) =2 f(n).

n=0

Then f(t) =1/(2\+1+1t) —1/(A+ 1+ 1t) is an increasing function of ¢ and is
negative for t > 0 and A > 1. Therefore, for A > 1,

O 1) — TE@A+1) < /OOO F(t) dt = log (;;;11) .

Similarly, we conclude

1 1 =
\I/()\+1)—\I/(2)\+1):m—m+z‘f(n>
n=1
1 1 A+1
> SRS P A
=+ 1 /\+1+0g<2/\+1>
> —log 2.

Lemma 8. For A > 1,

1 1 1 2 1
PR TS W S TR T W AR O Wi R O W )

(5)

U (A+1)—20'(2A+1) <

and WA+ 1) — U2\ + 1) is decreasing.
Proof. In [2], it is shown for « > 0,

1 1 1 1 1

4 < T

x+2x2 < (x)<x+2x2+6x3
and inequality (5) follows immediately from this. The fact that U(A4+1)—P¥(2A+
1) is decreasing follows from the fact that the right hand side of inequality (5)
is

6A% 42007 + 23\ + 8
6(A+1)3(2X +1)2

and this quantity is clearly negative when ) is positive. O




The function fo(x,\), = cosf, given in the following lemma, occurs in the
proof of Theorem 5.

Lemma 9. Define fo: (—=1,1] x [1,00) = R by

fa(z,A) = % - 2)\72+1+10g2
+2(P(A+1) —T(2A+1)) +log(l+ )+ (1 fx)lj\_)\. (6)

For A > 1, fo(1 —1/\ X) is decreasing.

Proof. Let g(A\) = f2(1 —1/A,A\). Then using inequality (5) in Lemma 8 we
have

1 4 1 1

g = _F+m+2(\1ﬂ(,\+1)—2\1/’(2)\+1))+ N2 1) G E0)?

1 2 2 1 4 1

EP VAN W NI Wk B TS Wk s Ry W () W )

_ 2400 —46)° — 230" + 22)% +350% + 18X 43 )
3AZ2A+1)2(A+1)3(20 1) '

<

Clearly, the right hand side of (7) is negative for A > 1. Thus, fo(1 —1/A,A) is
decreasing for \ > 1. O

Proof of Theorem 5. Let A > 1 and ¢y = 1+ 1/A. For this choice of ¢y, it is
clear by Theorem 3 that F'(-, \) given by Eq. (3) is a convex univalent harmonic
function in A for each A > 1. We will use Theorem 6 to show F' given by
equation (3) is a weak subordination chain. Using differential equation (2), we
can express F' in terms of V), as

ARG+ A+ 1)2V(2) | ARG — A+ D)2V](2)

Flz ) = 2\ + 1 2\ + 1
2A A+1 z 1—2z
= 2 I — .
1 Re @) 2057 m<1+z 1+ZV)\(Z)>

Clearly, F(z,-) € C![1,00) for each z € A and F(0,\) = 0 for each A > 1. Since
V) extends continuously into A (see [7]), we can apply Theorem 6 to F.

To begin, we will first find a simplified expression for [0F /9] (e, \), and
the normal to F(e?, \). From [7], it is known that

: 1 I 1
Re Vi (¢f) = —= + 2271 (A+1)

1 A R.
3 F(2)\+1)( +cosh)?, Oe

For z = ¢,

z 1-2 sin 0 '2(A+1)
I _ = A1 1 ).
m<1+z 1+2V)‘(Z)> 1+ cosd F(2/\+1)( + cos6)




Define

A ox 2\ +1)

— A-1
PO = 7 T e
Thus,
; A
10 _ . .
F (e N1 +p(0,A\) (1 4+ cos@ +i(A+1)sind).
Therefore,
OF 1

3N (CRPVE Terr e

+p(0,)) [(MQ;H) +1log2 +2(U(A +1) — U(2A + 1))

+ log(1 + cos 9)) (1 +cos6 +i(A+1) sin9> +i SinG] . (8)
and
—F (e, X) = p(0,\) (—i(A\* — 1) + iA(A + 1) cos — Asin6) . (9)

To apply Theorem 6, it is equivalent to show

2 2 122 ain2 ~ i
(T =X+ X1+ A)cosh)” + A°sin eRe 2[8F/8)\}(ev ) -0, (10)
1+ [0/00](F (e, X))
Letting © = cosf and for z € (—1,1], we can write the left side of (10) as
f1(z,A) + (1 + 2) fo(x, A) where f1 : (—1,1] x [1,00) = R is
A—1-)z
I2(A+1)
T2A+1)

fl(xv /\) =
A@2A +1)2* (1+z)M!

and fs is given by equation (6). Observe for A > 1,
m+(f1(x,>\) + (14 2) fa(z, N) = 0.

li
rz——1

Thus, to complete the proof of Theorem 5, we will show f1(z, A)+(1+z) fa(z, A) >
0 for —1 <z <1 and A > 1 via the following steps. See Figure 4 and Figure 5
for graphs of fi(z, A) + (1 + ) fa(z, A).

Step 1. Let A>1and —1 <2z < —1/2. Set

2AF2(>\+1)

Gl X) = A+ D2 Fis

(1+x)* L.
By Lemma 7

1 8G 2
ma(xv )= gy Flos2+ 2P+ 1) = ¥(2A+ 1)) + log(1 + z)

2 2
< 3 + log2 + 2log <3) +log(1 + ).
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Figure 4: Above is the graph of fi(z,\) + (1 + ) fa(x, A) for € (—1,1] and
A € [1,20].

12 16 20

Figure 5: Above are the graphs of fi(x,\) + (1 4+ z)fa(x, ) for A € [1,20] and
fixed values of x = —0.99,—-3/4,—1/2,—1/4, 0, 1/4, 1/2, 3/4, 1.
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Therefore, if log(1+z) < —2/3—log (8/9) or equivalently if z < (9/8)e~2/3—1 ~
—0.42 fixed, G(z, A) is a decreasing function of A. Thus,

A—1—-)x T

fl(xv/\) > m = —g-

Now, set H(x) = —x/3 + (1 + x)log(1 + ). Since H is a decreasing function
when z < e72/3 — 1 ~ —0.49, H(z) > H(-1/2). For A > 1 and -1 < 2 < 1,
define

1 2 A
q(z,\) = ——|—10g2+210g<

1 A
X 1 >+log(1+x)+(1—x)1+)\. (11)

220 +1

By Lemma 7, for A > 1 and —1 <z <1,
fa(z,A) > q(z, N).

Also, observe both fo and ¢ are increasing functions of z if —1 <z < 1/ and
decreasing otherwise for A > 1 fixed.
Next, we will use the fact that

dq

M+ N22A+ 1)~ (—20, ) S DY |

~ 10 20

9 29 71
oA

has a zero at A = 2 that gives a minimum for ¢(—9/20, A). Since A(1 —z)/(1 +
A) > A(1+9/20)/(1+ A), to show f1(z,A) + (1 + z) fo(z, A) > 0 in this step, it
suffices to show

() o (- 25) e ()] o

Using the observation about g above,

oo b(-5) e B)]= ()b (5 ()]

and consequently,

0 (;) +(1+z) [q (290,)\) —log (;(1))] > 0.07.

Step 2. Let A\ >1and —1/2 <z < 0. Set

22 +1)
A) =20~
JO) L2\ +1)
By Lemma 7,
() 2
70 =log2+2(P(A+1) = ¥(2A +1)) <log2 +2log ( 5 | <0.

11



Therefore,

A—1—-)x A—1—- )z
ACA+DJAN)(1 +2)21 = A2A+1)

fl (m, )\) =

Thus, to complete this step, it suffices to show

A—1—- Xz

K@ N =35

+ (14 2)g(xz,\) >0
where ¢ is given by equation (11). We will show for a fixed A > 1, K(z, A) is an
increasing function of  when —1/2 <z <0 and K(—1/2,A) > 0 for A > 1.

To do this, let A > 1 be fixed and we see that

0K 0
and 82K 9 82 A
_59q oq _ b2
6x2(;v,)\)—28x(x,)\)+(1+$)8m2($7>\)—1_|_x 1+ N\

Hence, 62K/8x2 changes sign at most once for —1/2 <z < 0and A > 1. It is
a simple calculation to show [0?K/dx%](—1/2,)) > 0 and [0%2K/dz2](0,)\) <0
for A > 1. Thus, [0K/0x](z,\) has at most one maximum in —1/2 < z < 0,
and since [0K/0x](—1/2,X) > 0 and [0K/0z](0,A) > 0 for A > 1, K(x,\) is an
increasing function of x for —1/2 <z <0 and A > 1 fixed.

To complete the case with —1/2 < < 0, by elementary calculus, we have
K(—1/2,)) is a decreasing function for A > 1 and limy_,o K(—1/2,\) > 0.
Thus, K(—1/2,A) >0 for A > 1.

Step 3. Let 1 < A<2and0<z<1-—1/\ For0<z<1-—1/\ fi(z,\)>0.
Also, for 1 <A <2, 1—1/X <1/A, and thus, fo(z,\) > q(z,A) > ¢(0, \) where
q is given by (11). Therefore, all that remains to be proved for this case is that
q(0,A) > 0. Define

P\ = 2(1+ M) (2) + 1)%(0, A) =203 — 407 4\ — 1.

Then P”(A\) > 0 when A > 2/3, and P(1) and P(2) are negative. Therefore,
P(A) <0for1 <A <2andq(0,)\) is a decreasing function of A on this interval.
Since ¢(0,2) > 0.17, we have the desired result.

Step 4. Let 1 <A <2and1—-1/A<z<1/A Sincex >1-—1/\, fi(z,\) <0.
Also,

1-A+ X T
_ > > -1
(I4+x)*1 = I+ = 7
et 2\ +1)
_|_
= \(2 NA_ 2
RA) =22+ 1) TA+ 1)
Then

]IZ&) - A@Tﬂ +log2 +2(¥(A+1) — ¥(2A +1)
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which is decreasing for 1 < A < 2 by Lemma 8. Thus,

R\
R(X

g

R'(2)
R(2)

> > 0.42.

g

Therefore, since R(A) > 0 for 1 < XA < 2, R is increasing and we have

1-2A+Xdr 1 1 1
Mo = R © R T

Since fa(x, A) is a an increasing function of x for x < 1/\, by Lemma 9,

filz,\) + (14 2) fa(z, A) > fé + (1 =1/AX)
> 2+ £2(1/2,2)
16, 3
— T toeg
> 0.03.

Step 5. Let A > 2 and 0 < z < 1/A. For these values of A\, 1/A < 1—1/A
and fi(x,\) > 0. Also, fa(x,A) is an increasing function of  when z < 1/A.
Therefore, to complete this step, it suffices to show f2(0,A) > 0. By Lemma 7,
we have

1 2 A
— - log 2+ 2(T(A+1) — T2\ +1)) + ——
F00) = § — g +log2 £ 2B 1)~ BEA+ 1)+ s
1 2 A
> 2 og2. 12
S RS W (12)

Define S()\) to be the right side of (12). Then A?(2X + 1)2(\ + 1)25"()\) =
AN~ 8X2 — 6\ — 1> 0 for A > 2. Thus, f2(0,)) > S(\) > S(2) > 0.07

Step 6. Let A > 2 and 1/A <z <1-—1/A. For these values of z, fi(x,\) > 0.
Thus, it suffices to show fa(z,A) > 0. For these values of z, fa(z,A) is a
decreasing function of z. Hence fa(z,\) > fo(l — 1/A,A) and by Lemma 9,
f2(1 = 1/X, ) is decreasing. Since limy_o0 f2(1 — 1/A,A) = 0, we see fo(1 —
1/A,A) > 0.

Step 7. Lastly, let A > 2 and 1—1/\ < 2 < 1. In this case, fi(x, A) and fo(z, \)
are decreasing functions of x. Therefore, by Lemma 7, fo(z, ) > fo(1,A\) >
1/A—1/(2A + 1) > 0. Thus,

.M%M+O+@b@AnnuLn+§_5%T
Ly p PO+
) 244 F(22)\+1) (13)
?A+1)°
A2A + 1)4Am
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Define T'(\) to be the numerator of the right side of (13). To complete this case,
it suffices to show T'(A) > 0. By Lemma 7,

P 2%\ +1)

QY T2\ +1)

(log2 + ¥ (A+1)—T(2A+ 1)) >0,

and so T'(A\) > T'(2) = 2/3.

Thus, for A > 1 and -1 < z < 1, fi(z,A) + (1 + 2) fa(z, A) > 0 and by

Theorem 6, we have F(A, A1) C F(A, \3) whenever 1 < A1 < Ag.

O
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