
An O(n2) Time Algorithm for Deciding
Whether a Regular Language is a Code

Robert McCloskey
Department of Computing Sciences

University of Scranton
mccloske@cs.uofs.edu

Abstract

We describe an algorithm that, given as input a nondeterministic finite automaton
A of size n, decides in O(n2) time whether the language accepted by A is a code. Let
Σ be a finite alphabet. A language η ⊆ Σ∗ is a code if every string in η∗ is written
uniquely as a concatenation of strings from η, or, equivalently, if η∗ is a free submonoid
of Σ∗ and η is its minimal generating set.

Keywords: algorithm, code, finite automaton, regular language, free monoid

1 Introduction

Informally, a code is a set of strings such that any “message” composed from its members
is uniquely decipherable. In [10], Sardinas and Patterson characterized codes in a way that
gave rise to the earliest algorithm for deciding whether a given finite set of strings is a code.
(See also Chapter 5 of [8] or Chapter 4 of [9].) Other algorithms for this problem followed,
including those described in [3] and [11].

An algorithm for the more general problem of deciding whether a given regular (also
called rational or recognizable) language is a code is given in [2]. This algorithm runs in
polynomial time, but its input is assumed to be an unambiguous finite automaton (i.e.,
one having a transition graph in which, for any string x and any states p and q, there is
at most one walk from p to q spelling out x). Thus, if the regular language is given by
an ambiguous finite automaton, it must be “disambiguated” before the algorithm can be
applied. As pointed out in [5], this construction can result in an exponential explosion in
the number of states.

In [5], Head and Weber avoided this pitfall by taking a different approach: they showed
that the problem is reducible to that of deciding whether a given nondeterministic finite
transducer is single-valued, which was proved in [4] to be solvable in polynomial time.

1

Here, we show that the algorithm arising directly from [10]—which is applicable only to
finite languages—can be generalized to one that is capable of determining whether a given
regular language is a code. The input is assumed to be given in the form of (the transition
graph of) a (possibly ambiguous) nondeterministic finite automaton (henceforth, NFA) A;
the algorithm’s running time is O(n2), where n is the sum of the numbers of states and
transitions in A. The number of symbols in A’s alphabet is taken to be a constant.

The paper has three sections following this one. Section 2 covers some concepts and
notation pertaining to NFA’s and formal languages. In Section 3, we characterize NFA’s
that accept codes. In the final section, the algorithm is sketched and its asymptotic running
time is determined.

2 Notation and terminology

The reader is assumed to be familiar with the notion of a directed graph1 and with the
fundamentals of formal languages (e.g., alphabet, string, language). Prior exposure to the
theory of finite automata and regular languages would be very helpful. Generally, our nota-
tion is consistent with [6] and [7]. Throughout the paper, Σ denotes a finite alphabet and λ
the empty string.

Along with the usual set-theoretic operations on languages (e.g., union, intersection), we
use extensively left quotient, which, for α, β ⊆ Σ∗ is defined by

α \ β = {y | xy ∈ β for some x ∈ α}

Also central to our work is the notion of an NFA, which is a 5-tuple A = (Q, Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q×(Σ∪{λ}) → 2Q is the transition
function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting states. A is naturally
identified with the directed, edge-labeled graph TA (called its transition graph) with node
set Q and edge set E = {(p, a, s) ∈ Q × (Σ ∪ {λ}) × Q | s ∈ δ(p, a)}. (The triple (p, a, s)
denotes the edge from p to s labeled a.) From now on, we will abuse the notation by not
bothering to distinguish between an NFA and its transition graph.

By extending the domain of δ to Q × Σ∗ in the natural way, we get the function δ∗ :
Q × Σ∗→2Q satisfying q ∈ δ∗(p, x) iff there exists a walk in A from p to q whose edge
labels (when concatenated) “spell out” the string x. (See [6].) The language accepted by A,
denoted L(A), is {x ∈ Σ∗ | δ∗(q0, x) ∩ F 6= ∅}, i.e., the set of strings spelled out by walks in
A beginning at q0 and ending in accepting states. The domain of δ∗ is extended to 2Q× 2Σ∗

by letting
δ∗(P, η) =

⋃

p∈P,x∈η

δ∗(p, x)

If A has only one accepting state and there are no λ-transitions into that state and no
transitions of any kind out of that state, A is said to be in restricted form. The NFA depicted

1Strictly speaking, we use pseudographs, which may include edges from a node to itself and/or multiple
edges between two nodes.

2

in Figure 1 is in restricted form and accepts the language given by the regular expression
b(aba + ba)∗b.

½¼

¾»

µ´
¶³

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾» ½¼

¾»

- -
@

@
@

@
@@R

-

?@
@

@
@

@I¡
¡

¡
¡

¡ª

-

@
@

@
@

@@R¡
¡

¡
¡

¡µ

-

HHHHHY

©©©©©¼
-

b

b
bb

a

a

f

p r

s

q0 q0 f

r

p s

1,2

1,2

1,21,2

1,2

1,2

1

Figure 1: An NFA and its Patterson-Sardinas graph

In the remainder of the paper, we fix A = (Q, Σ, δ, q0, F). Whenever A is stipulated to
be in restricted form, fix F = {f}.

Where A is understood from context and p, s ∈ Q, we use Lp→s to denote the set of
strings {x ∈ Σ∗ | s ∈ δ∗(p, x)}, i.e., x ∈ Lp→s iff x is spelled out by some walk in A beginning
at p and ending at s. Where P, S ⊆ Q, let

LP→S = {x ∈ Σ∗ | S ∩ δ∗(P, x) 6= ∅}

We define Lp→S and LP→s similarly. The following two lemmas are obvious:

Lemma 1 For any P, P ′, S, S ′ ⊆ Q, if P ⊆ P ′ and S ⊆ S ′, then LP→S ⊆ LP ′→S′

Lemma 2 For any P,R, S ⊆ Q, LP∪R→S = LP→S ∪ LR→S

For our first non-trivial lemma, we have

Lemma 3 For any P,R, S, T ⊆ Q, LP→R\LS→T = Lδ∗(S,LP→R)→T .

Proof: Let y ∈ LP→R \ LS→T . By definition of left quotient, there exists some x ∈ LP→R

such that xy ∈ LS→T . It follows that y ∈ Lq→T for some state q ∈ δ∗(S, x). But then
y ∈ Lq→T ⊆ Lδ∗(S,x)→T ⊆ Lδ∗(S,LP→R)→T , where the two set inclusions are due to Lemma 1
together with the observation that {q} ⊆ δ∗(S, x) ⊆ δ∗(S, LP→R).

Let y ∈ Lδ∗(S,LP→R)→T . For some state q ∈ δ∗(S, LP→R), y ∈ Lq→T . It follows that
x ∈ LS→q for some x ∈ LP→R. From x ∈ LS→q and y ∈ Lq→T , it is evident that
xy ∈ LS→T . Now, {y} = {x}\{xy}, x ∈ LP→R, and xy ∈ LS→T . Thus, y ∈ LP→R\LS→T .

3

3 Characterizing NFA’s that accept codes

Definition 1 A language η ⊆ Σ∗ is a code if, whenever x1, x2, . . . , xm,y1, y2, . . . , yn are in
η and satisfy

x1x2 · · · xm = y1y2 · · · yn,

then m = n and xi = yi for all i, 1 ≤ i ≤ m.

For example, {ab, ba, bb, abbab} is not a code, because ab · ba · ba · bb · ab = abbab · abbab.
We leave it to the reader to verify that the removal of any (one or more) of the strings from
this set results in a code.

In [10], codes are characterized according to a sequence of sets, called “segments” (here
denoted by subscripted S’s), which are formed by repeated application of the left quotient
operation. The details follow.

Definition 2 For η ⊆ Σ∗, define

S0(η) = η

S1(η) = η \ η − {λ}
S i+1(η) = η \ S i(η) ∪ S i(η) \ η (i > 0)

Theorem 1 ([10]) Let η ⊆ Σ∗. Then η is a code iff λ /∈ η and

η ∩ ⋃

i>0

S i(η) = ∅

It is clear that, for any i > 0, η ∩ S i(η) = ∅ iff λ /∈ S i+1(η). From this, we get the following:

Corollary 1 A language η ⊆ Σ∗ is a code iff

λ /∈ ⋃

i≥0

S i(η)

Suppose η ⊆ Σ∗ is finite, and let x ∈ η be a string of maximal length in η. Then, by the
properties of left quotient, there can be no string in any segment S i(η), i ≥ 0, whose length
exceeds that of x. Thus, the union ∪i≥0S i(η) of all segments is a finite set. Moreover, if, for
some k ≥ 0, Sk(η) ⊆ ∪0≤i<kS i(η), then the union of all segments is equal to ∪0≤i<kS i(η).
(This statement is true even if η is infinite.) Using these facts together with Theorem 1 (or
its corollary), it is easy to devise an algorithm for deciding whether a finite language is a
code.

For the purpose of generalizing this algorithm to the case of regular languages, below we
define the state sets Qi (i ≥ 0), which, in analogy to the segments S i (i ≥ 0) of Definition 2,
serve as the basis of our characterization of NFA’s that accept codes.

4

Definition 3 For an NFA A, define ΦA : Q×Q → 2Q as follows:

ΦA(p, s) = δ∗(s, Lp→F)

(Where A is clear from context, the subscript is omitted.) The domain of Φ is extended in
the natural way to allow either argument to be a set. For example, Φ(P, S) = δ∗(S, LP→F).
We define Φ(p, S) and Φ(P, s) similarly.

We now state two lemmas regarding the above definition; the first follows immediately
from it.

Lemma 4 For p, s ∈ Q, Φ(p, s) = {r ∈ Q | Ls→r ∩ Lp→F 6= ∅}.

Lemma 5 LP→F \ LS→F = LΦ(P,S)→F

Proof: Replace R and T by F in Lemma 3 and use the definition of Φ.

Definition 4 For an NFA A, define

Q0(A) = {q0}
Q1(A) = Φ(q0, q0) − F

Qi+1(A) = Φ(q0,Qi(A)) ∪ Φ(Qi(A), q0) (i > 0)

Lemma 6 Let η = L(A), with A in restricted form. Then, for all k ≥ 0,

LQk(A)→f
= Sk(η).

Proof: We use induction on k. The basis covers k = 0 and k = 1. For k = 0, we have

LQ0(A)→f
= Lq0→f = L(A) = η = S0(η)

For k = 1:

LQ1(A)→f
= L(Φ(q0,q0)−{f})→f (defn. of Q1)

= LΦ(q0,q0)→f − {λ} (Lf→f = {λ}; λ ∈ Lq→f ⇒ q = f)
= Lq0→f\Lq0→f − {λ} (Lemma 5)
= η\η − {λ} (Lq0→f = L(A) = η)
= S1(η) (defn. of S1)

For the induction step, let k ≥ 1.

LQk+1(A)→f

= L
(Φ(q0,Qk(A)) ∪ Φ(Qk(A),q0))→f

(defn. of Qk+1)

= L
Φ(q0,Qk(A))→f

∪ L
Φ(Qk(A),q0)→f

(Lemma 2)

= Lq0→f\LQk(A)→f
∪ LQk(A)→f

\Lq0→f (Lemma 5)

= η\Sk(η) ∪ Sk(η)\η (ind. hyp.; Lq0→f = L(A) = η)
= Sk+1(η) (defn. of Sk+1)

5

Theorem 2 For A in restricted form, L(A) is a code iff

f /∈ ⋃

i≥0

Qi(A)

Proof: It follows from Lemma 6, Corollary 1, and λ ∈ Lq→f iff q = f .

We now introduce a concept that, although not used directly in the algorithm, aids us
in proving its correctness.

Definition 5 The Patterson-Sardinas graph of A, denoted PS(A), is the directed graph with
node set Q and edge set E = E1 ∪ E2, where

E1 = {(p, s) | s ∈ Φ(p, q0)} and E2 = {(p, s) | s ∈ Φ(q0, p)}2

Figure 1 shows an NFA and its Patterson-Sardinas graph. (Each edge of the latter is labeled
by 1 and/or 2 to show from which set, E1 and/or E2, it comes.) A walk s0, s1, . . . , sn in

PS(A) is said to be good if either n = 0 or s1 /∈ F . We use p
k
; s to denote that there is a

good walk of length k from p to s in PS(A).

Lemma 7 Let A be in restricted form. For all s ∈ Q and all k ≥ 0, there is a good walk of

length k in PS(A) from q0 to s (i.e., q0
k
; s) iff s ∈ Qk(A).

Proof: We use induction on k. The basis covers k = 0 and k = 1. For k = 0, we have

q0
0
; s ≡ s = q0 ≡ s ∈ Q0(A)

For k = 1 :

q0
1
; s

≡ s 6= f ∧ ((q0, s) ∈ E1 ∨ (q0, s) ∈ E2) (defn. of (good) walk)
≡ s 6= f ∧ (s ∈ Φ(q0, q0) ∨ s ∈ Φ(q0, q0)) (defn. of E1, E2)
≡ s 6= f ∧ s ∈ Φ(q0, q0) (P ∨ P ≡ P)
≡ s ∈ Φ(q0, q0)− {f} (x 6= y ∧ x ∈ Z ≡ x ∈ Z − {y})
≡ s ∈ Q1(A) (defn. of Q1)

2By Lemma 4, we can also say E1 = {(p, s) | Lq0→s ∩Lp→F 6= ∅} and E2 = {(p, s) | Lq0→F ∩Lp→s 6= ∅}.

6

For the induction step, let k ≥ 1.

q0
k+1
; s

≡ (∃s′)(q0
k
; s′ ∧ ((s′, s) ∈ E1 ∨ (s′, s) ∈ E2)) (defn. of (good) walk)

≡ (∃s′)(s′ ∈ Qk(A) ∧ ((s′, s) ∈ E1 ∨ (s′, s) ∈ E2)) (ind. hyp.)
≡ (∃s′)(s′ ∈ Qk(A) ∧ (s ∈ Φ(q0, s

′) ∨ s ∈ Φ(s′, q0))) (defn. of E1, E2)
≡ (∃s′)((s′ ∈ Qk(A) ∧ s ∈ Φ(q0, s

′))∨
(s′ ∈ Qk(A) ∧ s ∈ Φ(s′, q0))) (∧ distributes over ∨)

≡ (∃s′)(s′ ∈ Qk(A) ∧ s ∈ Φ(q0, s
′))∨

(∃s′)(s′ ∈ Qk(A) ∧ s ∈ Φ(s′, q0)) (∃ distributes over ∨)
≡ s ∈ Φ(q0,Qk(A)) ∨ s ∈ Φ(Qk(A), q0) (defn. of Φ)
≡ s ∈ Φ(q0,Qk(A)) ∪ Φ(Qk(A), q0) (x ∈ Y ∨ x ∈ Z ≡ x ∈ Y ∪ Z)
≡ s ∈ Qk+1(A) (defn. of Qk+1)

Theorem 3 Let A be in restricted form. Then L(A) is a code iff there are no good walks
from q0 to f in PS(A).

Proof: The statement follows immediately from Lemma 7 and Theorem 2.

Consider the NFA A and its Patterson-Sardinas graph PS(A), both shown in Figure 1.
There are no good walks in PS(A) from q0 to f ; hence, L(A) (i.e., b(aba + ba)∗b) is a code.
Suppose that we were to construct A′ by adding the edge (p, a, f) to A. The graph PS(A′)
contains all the edges of PS(A), plus others, including (q0, r). Thus, in PS(A′) there is a
good walk q0, r, f , indicating that L(A′) (i.e., b(aba + ba)∗(a + b)) is not a code.

4 The algorithm

The algorithm is based on Theorem 3. However, it is not necessary to construct PS(A) in
order to determine whether that graph contains a good walk from q0 to f . (This construction
can be performed in O(n3) time, but, as far as we could determine, no faster.) It suffices,
instead, to construct (a variant of) the direct product of A (see [6]), which is given by
〈A× A〉 = (Q×Q, Σ, δ′, [q0, q0], [f, f]), where, for p, q ∈ Q,

δ′([p, q], a) = δ(p, a)× δ(q, a) (a ∈ Σ)
δ′([p, q], λ) = ((δ(p, λ) ∪ {p})× (δ(q, λ) ∪ {q}))− {[p, q]}

It is easy to verify (by induction on |x|) that [r, s] ∈ δ′∗([p, q], x) iff r ∈ δ∗(p, x) and s ∈
δ∗(q, x). That is, there is a walk in 〈A×A〉 from [p, q] to [r, s] spelling out x iff A has walks
from p to r and from q to s, both of which spell out x. Comparing this with the definition
of the edge set E1 ∪ E2 of PS(A) and making use of Lemma 4, as well as the symmetry of
〈A× A〉, the following becomes evident:

Lemma 8 Let A be in restricted form, and let p, s ∈ Q. Then

(p, s) ∈ E1 iff [s, f] ∈ δ′∗([q0, p], x) for some x ∈ Σ∗ and

7

(p, s) ∈ E2 iff [f, s] ∈ δ′∗([q0, p], x) for some x ∈ Σ∗.

That is, (p, s) ∈ E1 (respectively, E2) iff there is a walk in 〈A × A〉 from [q0, p] to [s, f]
(respectively, [f, s]).

Let Â be the directed graph obtained by taking 〈A×A〉 and inserting, for each s 6= f , an
edge from each of [s, f] and [f, s] to [q0, s]. Refer to a state [s, f] or [f, s], where s 6= f , as a
semi-final state. It follows from A being in restricted form that, in 〈A× A〉, any transition
out of a semi-final state must be a λ-transition to another semi-final state.

Lemma 9 Let A be in restricted form. Then there exists a good walk in PS(A) from q0 to
f iff there exists a walk in Â from [q0, q0] to [f, f] that passes through at least one semi-final
state.

Proof: Let p0, p1, . . . , pk be a good walk in PS(A), where p0 = q0 and pk = f . By definition
of good walk, this requires k > 1. From Lemma 8 it follows that, for each i, 0 ≤ i < k, there
is a walk in 〈A× A〉 (and hence in Â) from [q0, pi] to either [pi+1, f] or [f, pi+1], the former
if (pi, pi+1) ∈ E1 and the latter if (pi, pi+1) ∈ E2. By the construction of Â, there are edges
from both [pi+1, f] and [f, pi+1] to [q0, pi+1] for all i, 0 ≤ i < k − 1. Thus, there is a walk in
Â that begins at [q0, q0], ends at [f, f], and, for each i satisfying 1 ≤ i < k, passes through
either [f, pi] or [pi, f].

For the converse, let

W = [q0, q0], . . . , [p1, r1], . . . , [p2, r2], , [pk, rk], . . . , [f, f]

be a walk in Â, where k > 0 and where the states [pi, ri], 1 ≤ i ≤ k, are all those on W
that are both semi-final and not immediately followed on W by another semi-final state. For
each i, let si be the one among pi and ri that is not f . By the construction of Â, the only
edge that leaves [pi, ri] and enters a state that is not also semi-final goes to [q0, si]. Thus,

W = [q0, q0], . . . , [p1, r1], [q0, s1], . . . , [p2, r2], [q0, s2], , [pk, rk], [q0, sk], . . . , [f, f]

Moreover, any walk in Â that does not include an edge from a semi-final state to a non-
semi-final state is also a walk in 〈A×A〉. Referring to W , we conclude that in 〈A×A〉 there
are walks from [q0, q0] to [p1, r1], from [q0, si] to [pi+1, ri+1] (for each i satisfying 1 ≤ i < k),
and from [q0, sk] to [f, f]. Thus, by Lemma 8, either (q0, p1) ∈ E1 (in the case r1 = f) or
(q0, r1) ∈ E2 (in the case p1 = f). Either way, (q0, s1) ∈ E. By similar reasoning, for each
i satisfying 1 ≤ i < k, either (si, pi+1) ∈ E1 or (si, ri+1) ∈ E2. Either way, (si, si+1) ∈ E.
Finally, by Lemma 8 once more, (sk, f) ∈ E. It follows that q0, s1, s2, . . . , sk, f is a walk in
PS(A). Because k > 0, it is a good walk.

From Theorem 3 and Lemma 9, the following is immediate:

Theorem 4 Let A be in restricted form. Then L(A) is a code iff there are no walks in Â
from [q0, q0] to [f, f] that pass through at least one semi-final state.

8

Assuming that each step can be completed in O(n2) time, Theorem 4 implies that, given
as input an NFA A′ of size n, the following algorithm correctly decides, in O(n2) time,
whether or not L(A′) is a code.

Step 1: If λ ∈ L(A′), answer NO and halt. Otherwise, continue.

Step 2: Construct an NFA A in restricted form with L(A) = L(A′).

Step 3: Construct Â.

Step 4: If there is a walk in Â from [q0, q0] to [f, f] that passes through a semi-final state,
answer NO and halt; otherwise, answer YES and halt.

To carry out Step 1, it is necessary only to determine whether there is a λ-path (i.e., a
path in which all edges are labeled by λ) in A′ from q0 to some state in F . This can be
accomplished in O(n) time using depth-first search. (See [1] for coverage of fundamental
graph algorithms.)

As for Step 2, first construct A′R (i.e., A′ with its edges reversed in direction). Then
apply depth-first search to A′R (traversing only edges labeled by λ and choosing as roots of
trees in the depth-first forest only nodes from F) in order to compute the set S of states in
A′ from which accepting states are reachable via λ-paths. To construct A, start with A′, but
make all its states non-accepting. Introduce a new state, f , which will be the lone accepting
state in A. For every transition (p, a, s) in A′, where s ∈ S and a ∈ Σ, let (p, a, f) be a
transition in A. Clearly, A is in restricted form, L(A) = L(A′), and the size of A is bounded
above by cn, where c is a small constant. All this can be completed in O(n) time.

To carry out Step 3, construct 〈A× A〉 and then insert the extra edges, as described in
the definition of Â. This requires time linear in the size of Â, which is O(n2).

As for Step 4, apply depth-first search to Â (taking [q0, q0] as the root of the depth-first
tree) in order to compute the set S1 of semi-final states reachable from [q0, q0]. Then apply
depth-first search (taking [f, f] as the root) to ÂR (i.e., Â with its edges reversed) in order to
compute the set S2 of semi-final states from which [f, f] can be reached in Â. Determining
whether to answer YES or NO reduces to determining whether or not S1 ∩ S2 = ∅. All this
can be completed in time linear in the size of Â, which is O(n2).

References

[1] Aho, A., Hopcroft, J., and Ullman J., The Design and Analysis of Computer Algorithms ,
Addison-Wesley, Reading, MA, 1974.

[2] Berstel, J. and Perrin, D., Theory of Codes , Academic Press, Orlando, FL, 1985.

[3] Blum, E.K., Free Subsemigroups of a Free Semigroup, Michigan Math. Journal 12
(1965), 179-182.

9

[4] Gurari, E. and Ibarra, O., A Note on Finite-valued and Finitely Ambiguous Transducers,
Math. Systems Theory 16 (1983), 61-66.

[5] Head, T. and Weber, A., Deciding Code Related Properties by means of Finite Trans-
ducers, in Sequences II , R.M. Capocelli, A. DeSantis, and U. Vaccaro (eds.), Springer-
Verlag (1993), 260-272.

[6] Hopcroft, J. and Ullman J., Introduction to Automata Theory, Languages, and Compu-
tation, Addison-Wesley, Reading, MA, 1979.

[7] Harrison, M.A., Introduction to Formal Language Theory , Addison-Wesley, Reading,
MA, 1978.

[8] Lallement, G., Semigroups and Combinatorial Theory , Wiley, New York, 1979.

[9] Salomaa, A., Jewels of Formal Language Theory , Computer Science Press, Rockville,
MD, 1981.

[10] Sardinas, A. and Patterson, C., A Necessary and Sufficient Condition for the Unique
Decomposition of Coded Messages, IRE Intern. Conv. Record 8 (1953), 104-108.

[11] Spehner, J.C., Quelques Constructions et Algorithmes Relatifs aux Soux-monoides d’un
Monoide Libre, Semigroup Forum 9 (1975), 334-353.

10

