
Sketches of Some CS1 Programming
Assignments∗

Paul Jackowitz1 and Robert McCloskey2
Computing Sciences Department

University of Scranton
Scranton, PA 18510

1paul.jackowitz@scranton.edu
2robert.mccloskey@scranton.edu

Abstract

Among the most important aims of CS 1 is to provide students with a
set of programming assignments that allows them to develop fundamental
software development skills. Here we give sketches of CS 1 assignments
involving the drawing of “ASCII figures” and the printing of cumula-
tive song lyrics, inspired by our use of the textbook by Reges & Stepp
(Building Java Programs — A Back to Basics Approach [1]). These as-
signments could be adapted to courses that utilize other textbooks or
employ languages other than Java.

1 Introduction

The central goal of CS 1, at least for students majoring in computing, is to
begin to develop fundamental software development skills. As the old adage
goes, you “learn by doing”. Hence, having a good set of programming problems
to work on is key in attaining that goal. Here we provide sketches of several
programming assignments that we have employed in teaching CS 1 for the
past decade, in the hope that others who teach the course will find them, or

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

165

adaptations thereof, to be useful. (Complete descriptions are available from the
authors.) The assignments reflect our use of Building Java Programs — A Back
to Basics Approach, by Reges & Stepp [1], which takes the view that objects
can wait until after a novice programmer has gained some skill in using the
basic procedural programming constructs, including variable declaration and
assignment, arithmetic expressions, conditional (i.e., if-else) statements, loops,
and method calls/declarations. However, they could be adapted to courses
that use other textbooks or other popular languages, including Python, C++,
or C#.

2 Procedural Decomposition

Among the difficulties in teaching CS 1 is devising meaningful programming
exercises early in the semester, when students have been exposed to only a
small subset of a programming language’s constructs. Part of the solution lies
in making a good choice regarding the order in which those constructs are
introduced. In this respect, [1] is rather unconventional.

The first programming principle presented in [1] is procedural decomposi-
tion, which suggests that a complex task should be divided into a set of simpler
subtasks. In terms of programming in Java, this translates into an appropriate
use of methods. In particular, if a subtask is performed multiple times, and
in different contexts, that would be a strong indicator that it “deserves” to be
implemented in its own method.

/\ \ /
/ \ \ /

/ \ \/
\ / /\
\ / / \
\/ / \

Figure 1

To illustrate this principle, all that is
needed are “print” statements and (parameter-
less) methods, which together can be employed
to produce primitive “drawings”, such as those in
Figure 1 (which are taken from [1]). The idea
is that a well-modularized program that draws
both figures would reflect the fact that the top
half of the diamond shape (a cone) is produced in
the same way as the bottom half of the ‘X’, and
vice versa (a V-shape), so that the methods that
draw a diamond and an ‘X’, respectively, would
rely upon lower-level methods (containing only

statements that print string literals) that draw a cone and a ‘V’:

public static void drawDiamond() { drawCone(); drawV(); }
public static void drawX() { drawV(); drawCone(); }

After presenting this example —and perhaps a few others with slightly more
complexity— we typically ask students to make extensive use of procedural

166

decomposition in developing a program that “draws” one or more figures having
repeated parts.

###
+-----------------------+
	+-----+			
+-----------+				
+-----------------------+				
+-----------+				
	+-----+			
+-----------------------+

###

Figure 2

One example is the rendering of the soc-
cer field shown in Figure 2. Notice that
there are seven distinct lines of text, each of
which appears two or more times in the draw-
ing. Figure 3 shows excerpts from a solution.
(There and elsewhere in figures that present
source code, we use ellipses to indicate miss-
ing parts, omit the prefix “System.out” from
calls to methods that print strings, and com-
promise formatting convention by placing mul-
tiple statements per line along with other ac-
commodations, so as to save space and provide
emphasis.)

Among the figures that we have used as the
basis of assignments are a football field, “boxes”
of various shapes stacked upon one another,
and others that are rather contrived. Students
are expected to recognize the portions of the
figures that appear multiple times and, for each
one, to formulate and make use of a method
that draws it. To be successful, a student must
have a clear understanding of how method calls
affect a program’s flow of control.

The more essential point has to do with mo-
tivating students to recognize the potential merit of refactoring a highly redun-
dant sequence of print statements into an equivalent modularized program. We
emphasize the potential problems redundant statements may present in soft-
ware. We ask, what if a statement, used in multiple places, is subsequently
determined to be incorrect, or what if such a statement is desired to be modi-
fied (for example, to change the width of the soccer field)? How certain might
one be that they have found and modified all of the appropriate statements
in need of change? Developing an appreciation of such issues, when they can
readily see the results in the output, helps to prepare students to apply similar
thinking later on when working with much more involved tasks where abstrac-
tion will be vitally important. Even recognizing that there may be multiple
worthwhile ways to decompose a task has merit, as it may, and should, lead to
discussions regarding the relative merits of different approaches.

A quite different kind of programming exercise by which to teach procedu-
ral decomposition — again needing only print statements and parameter-less

167

public class SoccerField { |
|

static void main(String[] args)|
{ |

goal(); widthLine(); |
northPenaltyBox(); |
midField(); |
midfieldLine(); |
midField(); |
southPenaltyBox(); |
widthLine(); goal(); |

} |
|

static void northPenaltyBox() |
{ |

goalBoxSide(); |
goalBoxTop(); |
penaltyBoxSide(); |
penaltyBoxSide(); |
penaltyBoxTop(); |

} |
|

static void midField() { |
midFieldSide(); |
midFieldSide(); |
midFieldSide(); |
midFieldSide(); |

} |

static void midfieldLine()
{ widthLine(); }

static void goal()
{ println(" ### "); }

static void widthLine() {
println("+-----------------------+");

}

static void goalBoxSide() {
println("| | | | | |");

}

static void goalBoxTop() {
println("| | +-----+ | |");

}

static void penaltyBoxSide() {
println("| | | |");

}

...

}

Figure 3

methods— is to have students develop a program that prints the lyrics of a
cumulative song (i.e., one in which each verse extends the previous one) [2].

The classic example is The Twelve Days of Christmas. We have used Old
MacDonald Had a Farm, There Was an Old Lady Who Swallowed a Fly, and
the Irish folksong Rattlin’ Bog. To illustrate, Figure 4 shows excerpts of a
Java program that prints the lyrics of one version of Old MacDonald and
that demonstrates a significant use of procedural decomposition, along with
(admittedly) method chaining.

3 Loops

Once students have been introduced to variables, assignment, and arithmetic
expressions (which [1] does in Chapter 2), more figure-drawing exercises can
be used as a vehicle for exploring iteration and generalization using the for-

168

public class OldMacDonald {

public static void main(String[] args) {
preamble(); print("a cow, "); eieio(); verseMoo();
preamble(); print("a duck, "); eieio(); verseQuack();
preamble(); print("a pig, "); eieio(); verseOink();
preamble(); print("a dog, "); eieio(); verseWoof();

}

...

private static void verseQuack() {
println("With a quack-quack here and a quack-quack there");
println("Here a quack, there a quack, everywhere a quack-quack");
verseMoo();

}

private static void verseOink() {
println("With an oink-oink here and an oink-oink there");
println("Here an oink, there an oink, everywhere an oink-oink");
verseQuack();

}

...

private static void preamble()
{ oldMacHadAFarm(); andOnThisFarm(); }

private static void oldMacHadAFarm()
{ print("Old MacDonald had a farm, "); eieio(); }

private static void andOnThisFarm()
{ print("And on this farm he had "); }

private static void eieio() { println "E-I-E-I-O"; }

}

Figure 4

169

loop construct. As an example, consider once again the diamond and X-shapes
discussed earlier. Figure 5 shows most of a program that prints the two shapes.
An easy-to-change global constant, SIZE, determines the size of each one. Other
figure-drawing programs (e.g., for the soccer field) can be refactored in a similar
way so that the sizes of the produced figures are determined by global constants.

public class drawDiamondAndX {
private static final int SIZE = 6;

public static void main(String[] args)
{ drawDiamond(); drawX(); }

public static void drawDiamond()
{ drawCone(); drawV(); }

public static void drawX()
{ drawV(); drawCone(); }

public static void drawCone() {
for (int i=1; i <= SIZE; i++) {

for (int j=0; j != SIZE-i; j++) {
{ print(" "); }

print("/");
for (int j=0; j != 2*(i-1); j++)

{ print(" "); }
println("\\");

}
}
...

}

Figure 5

The point here is for stu-
dents to learn how to gener-
alize their programs so that
straightforward differences in
output can be effected with-
out having to make wholesale
modifications to the source
code. Of course, once students
learn how to assign values to
variables through input at run-
time, those inputs can be used
in place of constants, thereby
yielding programs that are sen-
sitive to user (or file) input.

4 Parameterization

Parameter passing is intro-
duced in Chapter 3 of [1],
providing the opportunity to
further improve the figure-
drawing (and lyric-producing)
programs by making use of pa-
rameters —in place of global
constants or variables— to dic-
tate the behavior of methods.

This is our next step in
teaching students when, how, and why to use methods. By utilizing parame-
ters, methods become more self-contained, insulating them from being coupled
with external data and thereby increasing their potential for reuse.

The task of having a program draw a checkerboard-like pattern, as in Fig-
ure 6, is one that we have employed at this point in the course. This pattern
can be described by multiple parameters, including ones indicating the height
and width of each cell and the number of rows and columns on the board.
Additionally, the characters employed in printing the alternating “light” and
“dark” cells can be parameters.

170

public class CheckerBoard { |
static final char DARK_CHAR = ’#’; |
static final char LIGHT_CHAR = ’-’;|

|
static void main(String[] args) { |

int boardSize = 3; |
int cellSize = 4; |
drawBoard(boardSize,cellSize); |

} |
|

static char otherOf(char c) { |
if(c == DARK_CHAR) |

{ return LIGHT_CHAR; } |
else |

{ return DARK_CHAR; } |
} |

|
static void drawBoard(int boardN, |

int cellN) { |
char start = DARK_CHAR; |
for(int i=0; i != boardN; i++) { |

drawRow(start,boardN,cellN); |
start = otherOf(start); |

} |
} |

static void drawRow(char start,
int columns,
int cellSize) {

for(int i=0; i != cellSize; i++) {
drawLine(start,columns,cellSize);
println();

}
}

static void drawLine(char start,
int columns,
int cellWidth) {

for(int i=0; i != columns; i++) {
print(start,cellWidth);
start = otherOf(start);

}
}

static void print(char c, int n) {
for(int i=0; i != n; i++)

{ print(c); }
}

}

Figure 7

####----####
####----####
####----####
####----####
----####----
----####----
----####----
----####----
####----####
####----####
####----####
####----####

Figure 6

Figure 7 presents the source code for a program that
prints such a checkerboard-like pattern. The character vari-
ables are global and the board and cells are square, so as
to limit the number of parameters to two, but the essen-
tial idea is illustrated. Indeed, one can provide this pro-
gram to students and ask them to generalize it so that the
drawBoard() method receives all six potential parameters
rather than only two.

Figure 8 presents the source code for a program that
is a refactoring of the Old MacDonald program to make
use of parameters, in this case strings that represent the
animal names and utterances. This program also presents
an opportunity for if-else statements to be used for the
purpose of choosing the correct article (i.e., “a” versus “an”)
to precede those strings.

171

public class OldMacDonald {

public static void main(String[] args) {
preamble("cow"); verseMoo();
preamble("duck"); verseQuack();
preamble("pig"); verseOink();
preamble("dog"); verseWoof();

}

static void preamble(String animal)
{ oldMacHadAFarm(); andOnThisFarm(animal); eieio(); }

static void verseQuack()
{ withA("quack"); verseMoo(); }

static void verseOink()
{ withA("oink"); verseQuack(); }

static void oldMacHadAFarm()
{ print("Old MacDonald had a farm, "); eieio(); }

static void withA(String noise) {
println("With a " + noise + "-" + noise + " here and a " +

noise + "-" + noise + " there");
println("Here a " + noise + ", there a " + noise +

", everywhere a " + noise + "-" + noise);
}

static void andOnThisFarm(String animal) {
print("And on this farm he had a " + animal + ", ");

}
}

Figure 8

5 Arrays

Later in the course, when arrays have been introduced, it is possible to employ
them in programs that produce cumulative songs, resulting in code that is very
easy to modify so as to produce alternative lyrics. This continues the process
of teaching students to strive for generality and flexibility in the programs they
develop. Figure 9 illustrates this with excerpts from yet another version of the
Old MacDonald program. Here, a pair of parallel arrays is used to specify the
various animal species’ names, and their corresponding utterances, making it
easy to add or modify verses.

172

public class OldMacDonald {

static String[] animals = { "cow", "duck", "pig", "dog" };
static String[] utterances = { "moo", "quack", "oink", "woof" };

public static void main(String[] args) {
for (int i=0; i != animals.length; i++) { verse(i); }

}

static void verse(int k) {
oldMacHadAFarm();
andOnThisFarm(animals[k]);
restOfVerse(k);

}

static void restOfVerse(int k) {
for (int j = k; j != -1; j--) {

withA(utterances[j]);
}
oldMacHadAFarm(); println();

}

static void andOnThisFarm(String animal) {
print("And on this farm he had a " + animal + ", "); eieio();

}
...

}

Figure 9

6 Objects

Figure 10 presents a further refactoring of the Old MacDonald program that
uses a single array of Animal objects, rather than a pair of parallel arrays of
strings. The Animal class is straightforward and is thus omitted here. This
mature version makes even better use of abstraction and language features.
Note the ease and reliability with which verses may be added and modified.
It also decouples the verse() and restOfVerse() methods from any global
variables.

7 Conclusion

When teaching CS 1, one must decide in what order to introduce various pro-
gramming language constructs, and once that order is decided upon a corre-
sponding set of constraints is imposed. Reges & Stepp [1], like every textbook,

173

public class OldMacDonald {

public static void main(String[] args) {
Animal[] animals = { new Animal("cow", "moo"),

new Animal("duck", "quack"),
new Animal("pig", "oink"),
new Animal("dog", "woof")

};
for (int i=0; i != animals.length; i++)

{ verse(animals,i); }
}

static void verse(Animal[] animals, int k) {
oldMacHadAFarm(); andOnThisFarm(animals[k].getName());
restOfVerse(animals,k);

}

static void restOfVerse(Animal[] animals, int k) {
for (int j = k; j != -1; j = j-1) {

withA(animals[j].getUtterance());
}
oldMacHadAFarm(); println();

}
...

}

Figure 10

follows one such ordering. Debates about the relative merits of one versus an-
other (e.g., objects-early vs. objects-late) have gone on for decades and will
undoubtedly continue. The purpose of this brief paper has not been to nec-
essarily advocate for one particular ordering, but rather to share sketches of
assignment ideas we have employed that may be used under some of these con-
straints. If they inspire related ideas and sketches usable under other sets of
constraints, then all the better.

References

[1] Stuart Reges and Marty Stepp. Building Java Programs: A Back To Basics
Approach. Pearson, Hoboken, NJ, 2019.

[2] Wikipedia. Cumulative_song. https://en.wikipedia.org/wiki/
Cumulative_song.

174

