
University of Scranton
ACM Student Chapter / Computing Sciences Department

14th Annual High School Programming Contest (2004)
--

Problem 1: Two Smallest and Two Largest

Develop a program that, given as input a sequence of integers, identifies the two smallest and
two largest (distinct) values appearing in the sequence. You may assume that the sequence
includes at least two distinct values.

Input: The first line contains a positive integer n indicating how many sequences are to be
processed. Each sequence is described by a positive integer m indicating its length, followed by
its m elements, one per line. You may assume that, among the elements in a sequence, there
are at least two different values.

Output: For each sequence given as input, three lines of output are to be generated. The first
identifies the two smallest (distinct) values occurring in the sequence, in ascending order; the
second line identifies the two largest (distinct) values occurring in the sequence, in descending
order. See sample output for correct format.

Sample Input: Corresponding Output:
------------- ---------------------
2 Two Smallest: -4 1
5 Two Largest: 1 -4
-4
-4 Two Smallest: -6 0
-4 Two Largest: 33 8
1
-4
10
5
8
2
-6
0
4
2
0
33
4

1

University of Scranton
ACM Student Chapter / Computing Sciences Department

14th Annual High School Programming Contest (2004)
--

Problem 2: Grade Point Averages

Develop a program that, given as input the grades that a student earned in courses taken over
the span of (possibly) several semesters, outputs relevant statistics (e.g., grade point average
(GPA)) about her performance in each semester and in the aggregate.

The grades that can be earned in a course, together with their respective point values are

B+: 3.3 C+: 2.3 D+: 1.3
A : 4.0 B : 3.0 C : 2.0 D : 1.0 F : 0.0
A-: 3.7 B-: 2.7 C-: 1.7

Depending upon how many hours per week a course meets, it is worth either 1, 2, 3, or 4
credits. If a student earns a grade of D or better (i.e., anything but F) in a course, she earns
the corresponding number of credits. Otherwise, she fails to earn any credits.

The number of quality points that a student earns from taking a course is the product of its
number of credits with the point value of the student’s grade in the course. For example, if a
student earns B- in a 3-credit course, she earns 3 · 2.7, or 8.1, quality points.

A student’s semester GPA is found by dividing the sum of the credits of the courses taken by
the student during that semester into the sum of the quality points she earned in those courses.

A student’s aggregate GPA is found by dividing the sum of the credits of all the courses taken
by the student into the quality points that she earned in all those courses.

Input: The first line contains a positive integer n indicating the number of semesters for
which we have data. The data for each semester begins with a line containing a positive integer
m indicating in how many courses the student was enrolled during that semester. Each of
the following m lines contains an integer between 1 and 4, inclusive, indicating the number of
credits of one of those courses, followed (on the same line) by the grade that the student earned
in that course.

Output: For each semester’s worth of data, six lines of output are to be generated. The first
one identifies the semester by number (beginning with 1). The second line reports how many
credits the student attempted to earn that semester. The third line reports how many credits
the student succeeded in earning that semester. The fourth line reports how many quality
points the student earned that semester. The fifth line reports the student’s GPA for that
semester. The sixth line is blank.

Following the output for the last semester, the corresponding aggregate statistics are reported,
in a similar format. (See the sample output below.)

2

Sample Input: Corresponding Output:
------------- ---------------------
2 Semester 1:
5 Credits Attempted: 16
3 B Credits Earned: 16
3 C+ Quality Points: 50.1
4 B+ GPA: 3.13
3 A
3 B Semester 2:
4 Credits Attempted: 13
3 F Credits Earned: 10
3 A Quality Points: 31.8
3 B GPA: 2.45
4 B-

Aggregate:
Credits Attempted: 29
Credits Earned: 26
Quality Points: 81.9
GPA: 2.82

3

University of Scranton
ACM Student Chapter / Computing Sciences Department

14th Annual High School Programming Contest (2004)
--

Problem 3: Point on a Line Segment?

Develop a program that, given as input a point P and the endpoints P1 and P2 of a line segment,
determines whether the former lies on the latter. You may assume that no two among P , P1,
and P2 are the same point (i.e., they are three distinct points). All of this is in the context of
the cartesian plane.

Input: The first line contains a positive integer n indicating how many instances of the problem
are to follow. Each instance is described on one line containing six real numbers: the first two
identify P , the next two identify P1, and last two identify P2. Each point is identified by its x
and y coordinates, respectively.

Output: For each given instance of the problem, one line of output is to be generated. That
line reports whether or not P lies on the line segment (P1, P2) (i.e., the line segment with
endpoints P1 and P2). See the examples below for the exact format.

Warning: The results of computer calculations on real numbers are only approximations.
Hence, it is rarely a good idea to compare two real numbers a and b for equality. Rather, one
should compare them to determine whether they are “almost equal” (see details below). If
they are almost equal, we attribute any difference between them to errors introduced during
calculation and we continue as though we had found them to be equal.

One standard approach is to deem a and b to be “almost equal” if the relative error between
them is no greater than some pre-chosen, small value (usually called by the Greek letter ε).
We define the relative error between a and b to be |a−b|

c , where c is the maximum of |a| and
|b|. (In the exceptional case in which a = 0 = b, the relative error between them is defined to
be zero.) Use ε = 0.001.

Hint: A necessary condition for P to lie on (P1, P2) is that P lies on the line passing through
P1 and P2. But this is not a sufficient condition, as is evidenced by the first example below.

Sample Input:

3
0.0 6.0 2.0 4.0 5.0 1.0
0.0 2.5 0.0 -5.7 0.0 7.2
13.1 3.5 -0.5 0.5 3.0 2.5

Corresponding Output:

(0.0,6.0) does not lie on line segment ((2.0,4.0), (5.0,1.0))
(0.0,2.5) lies on line segment ((0.0,-5.7), (0.0,7.2))
(13.1,3.5) does not lie on line segment ((-0.5,0.5), (3.0,2.5))

4

University of Scranton
ACM Student Chapter / Computing Sciences Department

14th Annual High School Programming Contest (2004)
--

Problem 4: Hills and Plateaus

An ascent is a sequence of length two or more in which each element, except for the first, is
larger than the one preceding it. An example of an ascent of length four is 〈−3 2 4 5〉.
A descent is defined similarly, except that each element, except for the first, is smaller than
the one preceding it. An example of a descent of length three is 〈5 2 0〉.
A hill is any sequence that is either an ascent or a descent.

A plateau is a sequence of length two or more in which each element, except for the first, is
equal to the one preceding it. An example of a plateau of length three is 〈8 8 8〉.
A sequence can be broken up, in a unique way, into sub-sequences that are (unextendable) hills
and plateaus. For example, consider the sequence

〈−4 2 3 3 3 6 5 2 0 0 1 2 5 5〉

If we enclose each ascent within parentheses (i.e., ‘(’ and ‘)’), each descent within curly braces
(i.e., ‘{’ and ‘}’), and each plateau within square brackets (i.e., ‘[’ and ‘]’), we get

〈 (−4 2 [3) 3 (3] {6) 5 2 [0}(0] 1 2 [5) 5] 〉

Notice that, where a hill meets a plateau (or two hills meet), the last element of one is the first
element of the other.

Develop a program that, given as input a sequence of integers, reports the number of ascents,
descents, and plateaus within that sequence, as well as the lengths of the longest ascent, longest
descent, and longest plateau.

Input: The first line contains a positive integer n indicating how many sequences are to be
processed. Each sequence is described by a positive integer m on one line, followed by m lines,
each containing one element of the sequence.

Output: For each sequence given as input, four lines of output are to be produced. The first
line reports the number of ascents within the sequence and the length of the longest one(s).
(See the sample output below for the required format.) Similarly, on the second and third lines,
respectively, are reported the number and maximum lengths of the descents and plateaus in
the sequence. The fourth line is to be blank.

5

Sample Input: Corresponding Output:
------------ ---------------------
2 # ascents: 3 max length: 4
14 # descents: 1 max length: 4
-4 # plateaus: 3 max length: 3
2
3 # ascents: 0 max length: 0
3 # descents: 1 max length: 2
3 # plateaus: 0 max length: 0
6
5
2
0
0
1
2
3
3
2
13
10

6

University of Scranton
ACM Student Chapter / Computing Sciences Department

14th Annual High School Programming Contest (2004)
--

Problem 5: Distance to a Cycle

Examine the figure below, which depicts a directed graph (or, more concisely, digraph) that we
will refer to as G. A digraph is composed of vertices (the singular of which is “vertex”) and
edges. We use circles to depict vertices and arrows to depict edges. An edge goes from one
vertex to another (possibly itself). It is customary to number the vertices (as in the figure) so
as to identify them.

The outdegree of a vertex is the number of edges “leaving” it. In this problem, we will be
concerned only with digraphs in which all vertices have outdegree 1. Notice that G has this
property.

8

4

3

5

21

12

13

11

15

14

76

10 9

Figure 1: Directed Graph G

In a digraph, a path is a sequence of vertices such that there is an edge from each vertex to the
next. The length of a path is the number of edges that are crossed in “walking” it. In G, for
example, 〈8, 7, 11, 15〉 is a path of length 3. (The length of a path is always one less than the
length of the sequence of vertices describing it.)

A cycle is a path of length greater than zero that begins and ends with the same vertex. In G,
for example, 〈14, 13, 11, 15, 14〉 is a cycle, as is 〈5, 5〉.
Observe that, in G, some vertices lie on cycles (e.g., 5, 14, 15) whereas other ones do not (e.g.,
1, 3, 8, 10). However, for every vertex, there is a path beginning there that leads to a vertex
that lies on a cycle. This is true not only of G, but of every digraph in which all vertices have
outdegree greater than 0.

Develop a program that, given as input a digraph in which every vertex has outdegree 1,
outputs, for each vertex, the shortest path beginning at that vertex and ending in a vertex that
lies on a cycle. (For a vertex that lies on a cycle, the shortest such path has length zero!)

7

Note: A much more concise (but possibly harder to understand) description of the problem is
as follows:

Develop a program that, given an integer n > 0 and a function f : {1, 2, . . . , n} −→ {1, 2, . . . , n}
determines, for each i in {1, 2, . . . , n}, the minimum k for which, for some j > 0, fk(i) = fk+j(i).
(By fm(i) we mean f(f(· · · (f(i)) · · ·)), where there are m applications of f . More precisely,
we define recursively f0(i) = i and fm+1(i) = f(fm(i)) for m ≥ 0.)

Notice that there is an obvious interpretation of f as a digraph with vertices numbered 1
through n in which, for each i, the lone edge leaving vertex i goes to vertex f(i). Under this
interpretation, fm(i) is the vertex at the end of the path of length m beginning at vertex i.
End of note.

Input: The first line contains an integer n, 0 < n ≤ 50, indicating the number of vertices in
the digraph. Following that are n lines, each containing an integer between 1 and n. The k-th
such line identifies the vertex at the end of the outgoing edge from vertex k. (For example, if
the 5-th line contains 13, that means that the edge leaving vertex 5 goes to vertex 13.)

Output: For each vertex, there is to be one line of output, which is to contain the sequence of
vertices describing the shortest path from that vertex to one that lies on a cycle. The output
for vertex 1 should precede that for vertex 2, which should precede that for vertex 3, etc.

Sample Input: Corresponding Output:
------------- ---------------------
15 1 3 5
3 2 3 5
3 3 5
5 4 5
5 5
5 6 7 11
7 7 11
11 8 7 11
7 9 8 7 11
8 10 9 8 7 11
9 11
15 12 13
13 13
11 14
13 15
14

8

