
University of Scranton
ACM Student Chapter / Computing Sciences Department

19th Annual High School Programming Contest (2009)
--

Problem 1: Fibonacci String Sequences

One of the most famous families of sequences in mathematics is the family of Fibonacci
sequences. A Fibonacci sequence begins with two chosen values and is such that every value
thereafter is the sum of the previous two. For example, if we choose to begin the sequence with
0 and 1, respectively, we get

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

The same idea can be applied to character strings. However, rather than adding two consecutive
elements of a sequence to compute the next one, we concatenate them. For example, if we start
with the strings a and ba, we get the sequence

a, ba, aba, baaba, ababaaba, baabaababaaba, ababaababaabaababaaba, . . .

Develop a program that, given a positive integer m and two character strings, s1 and s2,
displays the first m elements of the Fibonacci string sequence (as defined above) whose first
two elements are s1 and s2, respectively.

Input: The first line contains a positive integer n indicating how many instances of the problem
are described thereafter. Each instance of the problem is described on three lines, the first of
which contains a positive integer m, the second of which contains a string s1, and the third of
which contains a string s2. (Neither s1 nor s2 contains any spaces (or, more generally, “white
space”).)

Output: For each triple (m, s1, s2) given as input, display the first m elements of the Fibonacci
string sequence that begins with s1 and s2, respectively, one string per line, and followed by a
blank line.

Sample input and output are on next page.

1

Sample input

2
6
a
ba
7
spock
kirk

Corresponding output

a
ba
aba
baaba
ababaaba
baabaababaaba

spock
kirk
spockkirk
kirkspockkirk
spockkirkkirkspockkirk
kirkspockkirkspockkirkkirkspockkirk
spockkirkkirkspockkirkkirkspockkirkspockkirkkirkspockkirk

2

University of Scranton
ACM Student Chapter / Computing Sciences Department

19th Annual High School Programming Contest (2009)
--

Problem 2: Intersecting Circles

A circle is the set of all points on the plane that are at a particular distance (called the radius)
from a particular point (called the center).

The intersection of two circles is the set of points that are common to both circles. This set
necessarily contains either zero, one, two, or (only in the case that the two circles are the same)
infinitely many points.

Develop a program that, given two circles, determines whether or not their intersection is
non-empty.

Below are two figures. The first shows two pairs of intersecting circles. The second shows two
pairs of non-intersecting circles.

Figure 1: Two Pairs of Intersecting Circles

Figure 2: Two Pairs of Non-Intersecting Circles

Hint: Recall that the distance between the points (x1, y1) and (x2, y2) is
√

(x2 − x1)2 + (y2 − y1)2

3

Input: The first line contains a positive integer n indicating how many pairs of circles are
to be analyzed. On each of the following n lines, a pair of circles is described. Each circle is
described by three real numbers, the first of which is its radius and the last two of which are
the x- and y-coordinates of its center, respectively. (Note that the sample input shown below
describes the four pairs of circles in the figures.)

Output: For each pair of circles given as input, the program is to report whether or not they
intersect.

Sample input

4
2.0 3.0 4.0 4.0 8.0 5.0
3.0 0.0 0.0 2.5 1.0 -1.0
3.0 2.0 7.0 2.0 -2.0 3.0
3.5 2.5 0.0 1.0 1.5 2.0

Corresponding output

The circles intersect.
The circles intersect.
The circles do not intersect.
The circles do not intersect.

4

University of Scranton
ACM Student Chapter / Computing Sciences Department

19th Annual High School Programming Contest (2009)
--

Problem 3: DFA String Acceptance

Depicted in the figure below is a deterministic finite automaton (DFA) that we will call M .
Each circle represents a state and each arrow labeled by a symbol represents a transition from
one state to another (or itself) associated with that symbol. The unlabeled arrow points to the
initial state. Double circles correspond to accepting states. By convention, we name the states
in a DFA s0, s1, . . ., sm−1, where m is the number of states and s0 is the initial state. The
set of symbols appearing as labels on transitions is called the alphabet of the DFA. Notice that
M ’s alphabet is {a, b}.

4

b a

b

b

a

b

a b a as s s s0 s1 2 3

Figure 3: Deterministic Finite Automaton M

Presented with an input string, a DFA processes it as follows: Beginning in the initial state, it
hops from state to state, following the sequence of transitions whose labels spell out the input
string. For example, presented with the input string aabba, M follows the path

s0
a→ s1

a→ s1
b→ s2

b→ s0
a→ s1

and thereby finishes in state s1. In a DFA, each state has, for each symbol of the alphabet,
exactly one outgoing transition labeled by that symbol. (This is what makes it “deterministic”,
as opposed to “nondeterministic”.) Therefore, for every state si and every string x, there is
exactly one path beginning at si whose labels spell out x.

If processing a string causes a DFA to finish in one of its accepting states, we say that the
automaton accepts that string. Otherwise, we say that the automaton rejects that string. In
the example above, M finished in the non-accepting state s1 after processing aabba; hence it
rejects that string. On the other hand, M finishes in the accepting state s4 after processing
ababaa, and so it accepts that string.

5

Note: If you examine M closely, you should be able to figure out that it accepts precisely those
strings composed of a’s and b’s that end in either ab or abaa. End of note.

Develop a program that, given a DFA with alphabet {a, b} and some input strings composed
of a’s and b’s, reports, for each input string, whether or not it is accepted by the DFA.

Input: The first line contains a positive integer m indicating the number of states in the DFA
to be tested, followed by the number k of accepting states (0 ≤ k ≤ m) in that DFA. The
second line contains a list of k distinct integers, each in the range 0..m − 1, identifying the
accepting states. The next m lines describe the outgoing transitions from states s0, s1, . . .,
sm−1, in that order, one state per line. On each such line will be two integers (in the range
0..m− 1) identifying the states to which the transitions labeled a and b go, respectively, from
the state in question. (The sample input below describes M .)

On the following line is a positive integer r indicating how many input strings are to be
processed. Each of the following r lines contains one such string.

Output: For each string given as input, generate one line of output that classifies that string
as being either accepted or rejected by the DFA.

Sample Input Corresponding Output
------------ --------------------
5 2 aabba is rejected
2 4 ababaa is accepted
1 0 bbabbbbab is accepted
1 2
3 0
4 2
1 2
3
aabba
ababaa
bbabbbbab

6

University of Scranton
ACM Student Chapter / Computing Sciences Department

19th Annual High School Programming Contest (2009)
--

Problem 4: Payroll Processing

Workers who are paid an hourly wage typically submit time cards to document during which
hours on which days they were at work. At the end of each week, the submitted time cards
are used for calculating, for each employee, the number of hours he worked during that week.
Using this figure, along with the employee’s hourly wage, we calculate his gross pay for that
week.

Develop a program that, given as input a sequence of employee records followed by a sequence
of time card records, calculates each employee’s gross pay. For the first 40 hours worked, an
employee should be paid at a rate corresponding to his hourly wage. For any time beyond 40
hours, an employee should be paid at a rate one and one-half (i.e., 1.5) times his hourly wage.

Input: The first line contains a positive integer n, where n ≤ 20, indicating the number of
employees. Each of the following n lines contains an employee record, which includes two fields
(separated by a space): the employee’s name (a character string not including any white space)
and his hourly wage (a real number). The records are in (ascending) alphabetical order with
respect to the names.

The line following the last employee record contains a positive integer m indicating how many
time cards were submitted during the week. Each of the next m lines contains a time card
record, which includes two fields (separated by a space): an employee name and a positive
integer indicating a number of (contiguous) minutes worked. The time card records are also
ordered by name.

For a given employee, there may be zero, one, or more time cards pertaining to her. The total
number of minutes worked by an employee is taken to be the sum of the figures on the time
cards pertaining to that employee.

Output: For each employee, excluding those whose time worked was zero, generate a line
of output that includes her name, number of hours worked, and gross pay (preceded by a
dollar sign (‘$’). (While rounding the numbers to two places after the decimal point (as in the
sample output) is preferred, it is not mandatory.) Don’t forget to account for overtime pay, as
described earlier.

Sample input and output appear on the next page.

7

Sample input Corresponding output
------------ --------------------
4 Alice: 9.25 hours, $136.44
Alice 14.75 Jim: 1.67 hours, $13.33
Bert 16.25 Ruth: 41.00 hours, $830.00
Jim 8.00
Ruth 20.00
8
Alice 480
Alice 75
Jim 100
Ruth 500
Ruth 460
Ruth 500
Ruth 500
Ruth 500

8

University of Scranton
ACM Student Chapter / Computing Sciences Department

19th Annual High School Programming Contest (2009)
--

Problem 5: Interval Union

Let a and b be numbers satisfying a ≤ b. Then the closed interval from a to b, denoted by
[a, b], is the set of real numbers x satisfying a ≤ x ≤ b. Here, a is said to be the interval’s lower
bound and b is said to be its upper bound.

Recall that, if S and T are sets, their union, denoted S ∪ T , is the set containing any value
that is a member of either (or both of) S or T . For example,

{cat, dog, elk} ∪ {bear, dog, lion, cat, gorn} = {cat, dog, elk,bear, lion, gorn}
Because a closed interval is a set, we can take the union of two (or more) of them, so that

[a1, b1] ∪ [a2, b2] ∪ · · · ∪ [am, bm]

is the set of real numbers x such that ai ≤ x ≤ bi for some i satisfying 1 ≤ i ≤ m.

The expression above is said to be in normal form if bi < ai+1 for each i satisfying 1 ≤ i < m.
That is, a union of closed intervals is in normal form if the intervals are listed so that each
one’s upper bound is less than the following one’s lower bound. (In particular, this means that
no two intervals overlap.)

For example, consider the expression

[3, 9] ∪ [18, 25] ∪ [10, 14] ∪ [21, 22] ∪ [7, 12]

To put this into normal form, we observe that [3, 9] overlaps with [7, 12], which overlaps with
[10, 14], so that the union of these three is [3, 14]. Also, [18, 25] overlaps [21, 22] (indeed, the
former wholly contains the latter), and their union is [18, 25]. Putting the two resultant intervals
in proper order, we get the normal form

[3, 14] ∪ [18, 25]

Develop a program that, given as input a collection of closed intervals having integer lower and
upper bounds, outputs the union of those intervals in normal form.

Input: The first line contains a positive integer n indicating the number of unions of intervals
that are to be processed.

Each such union is described by a positive integer r on one line, followed by the descriptions
of r closed intervals, one per line. Each closed interval is described by two integers a and b
satisfying a ≤ b.

Hint: You may find it useful, in processing a union of intervals, to sort them first. End of hint.

Output: For each collection of intervals given as input, the program should generate a single
line of output describing the union of that collection of intervals, in normal form. In place of
the ∪ symbol, use the plus sign (i.e., +).

9

Sample input Corresponding output
------------ --------------------
4 [3,12] + [18,20]
3 [-6,2] + [4,7] + [10,44] + [50,53]
3 9 [-6,2] + [7,40] + [50,53]
18 20 [-6,2] + [7,45] + [50,53]
7 12
7
10 15
-6 2
27 40
50 53
-4 0
4 7
12 44
5
-6 2
27 40
50 53
10 15
7 30
5
-6 2
27 40
50 53
10 15
7 45

10

University of Scranton
ACM Student Chapter / Computing Sciences Department

19th Annual High School Programming Contest (2009)
--

Problem 6: Point in Interior of Polygon?

A polygon is defined to be a figure on the cartesian plane formed by line segments such that

(1) each line segment intersects exactly two others, one at each endpoint, and
(2) no two line segments with a common endpoint are collinear (i.e., lie on the same line).

The endpoints of the line segments are referred to as the polygon’s vertices (singular: vertex)
and the line segments are referred to as its edges (or sides). A standard way of representing
a polygon is as a sequence 〈p1, p2, · · · , pm〉 of vertices, where, for each i satisfying 1 ≤ i < m,
line segment pipi+1 forms an edge of the polygon, as does pmp1.

Informally, any point on the plane that lies on the bounded region enclosed by the edges of a
polygon is said to be in the polygon’s interior. (The points comprising the polygon’s edges are
not considered to be in its interior, but this will be of no concern to us.) The figure below shows
an 8-sided polygon with its interior shaded and its vertices labeled by cartesian coordinates.

(0,0)

(−1,−3)

(4,−2)

(8,3)

(4,4)

(4,7)

(−2,5)

(−4,−2)

Figure 4: A Polygon with Shaded Interior

Develop a program that, given a polygon G and a point P that does not lie on any edge of G,
determines whether P is in the interior of G.

Hint 1: Let P be any point not lying on any edge of G. Take any ray that has P as its
endpoint and that does not intersect any vertex of G. Now count the number of edges of G
that the ray intersects. If this number is odd, P is in the interior of G; otherwise it is not. (This
follows, in part, from the observation that, as you move along the ray, each time you “pass
through” an edge you either pass from the polygon’s interior to its exterior, or vice versa.)

In practice, it is simplest to consider a ray that is either horizontal or vertical. The figure
below illustrates the idea using “rightward-directed” horizontal rays. Each one is labeled by a
number indicating how many edges of the polygon it intersects. Notice that the rays labeled
with odd numbers are precisely those whose endpoints are in the interior of the polygon.

11

0

0

3

2

1

Figure 5: Counting Intersections of Rays and Edges

Hint 2: Let pi = (xi, yi) for i = 1, 2. A rightward-directed horizontal ray that lies on the line
y = b cannot possibly intersect the line segment p1p2 unless min(y1, y2) ≤ b ≤ max(y1, y2).

Hint 3: Let pi = (xi, yi) for i = 1, 2, and let L be the line
←→
p1p2 passing through p1 and

p2. Assuming that y1 6= y2 (so that L is not horizontal), the point at which L intersects the
horizontal line y = b is

(αx1 + (1− α)x2, b)

where α =
∣∣∣ y2−b
y2−y1

∣∣∣. This information is helpful in determining whether or not the line segment
p1p2 lies “to the left” of (and hence does not intersect) a rightward-directed horizontal ray that
lies on the line y = b.

End of Hints

Input: The input data describes a polygon (as a sequence of vertices), followed by some number
of points, each of which is to be tested for being in the interior of the polygon. The first line
contains a positive integer m ≥ 3 indicating the number of vertices in the polygon. The next
m lines describe these vertices, one per line, each given by a pair of real numbers indicating
its x- and y-coordinate, respectively. On the following line is a positive integer n indicating
how many points are to be tested. The next n lines describe these points, one per line, as with
the vertices. You may assume that none of these points lies on any edge of the polygon and
that none of their y-coordinates is equal to any vertex’s y-coordinate. (The second condition
ensures that, for each given point, the horizontal line passing through it intersects none of the
vertices of the given polygon.)

Note that the sample data below corresponds to the polygon and the ray endpoints shown in
the second figure.

Output: For each point that is given as input, the program should identify it and report
whether or not it is in the interior of the given polygon.

Sample input and output appear on next page.

12

Sample input Corresponding output
------------ --------------------
8 (2.0,7.75): non-interior
-1.0 -3.0 (4.5,6.25): non-interior
0.0 0.0 (0.75,4.5): interior
4.0 -2.0 (-1.25,-0.75): interior
8.0 3.0 (-3.0,-2.5): non-interior
4.0 4.0
4.0 7.0
-2.0 5.0
-4.0 2.0
5
2.0 7.75
4.5 6.25
0.75 4.5
-1.25 -0.75
-3.0 -2.5

13

University of Scranton
ACM Student Chapter / Computing Sciences Department

19th Annual High School Programming Contest (2009)
--

Problem 7: Point in Interior of Polygon? — Again

In the previous problem, you were given the task of developing a program that, given a polygon
and a set of points, determines, for each point, whether or not it lies in the interior of the
polygon.

The hints given in that problem suggest that, to determine whether a point P lies in the interior
of a polygon G, we take the rightward-directed horizontal ray having P as its endpoint and
count how many edges of G the ray intersects. (An odd number indicates that P lies in the
interior; an even number indicates otherwise.)

In the previous problem, however, you were told that you could assume that none of the given
points would have the same y-coordinate as any of the vertices of the polygon. The purpose of
this restriction was to ensure that, for each given point, the rightward-directed horizontal ray
emanating from it would not pass through any vertex of the polygon.

In this problem, we lift that restriction. This makes things a bit more difficult because, in the
case of a ray that passes through one or more vertices of the polygon, the odd-implies-interior
and even-implies-exterior rule no longer applies, unless we modify the manner in which we
count ray/edge intersections.

Specifically, when counting how many edges of a polygon a ray intersects, we must be careful
to handle two special cases. The first one occurs when the ray intersects two adjacent edges at
their common endpoint. There are two sub-cases, each of which is depicted in the figure below.
On the left side of the figure, the ray intersects edges e1 and e2 at their common endpoint.
Because the other endpoints of e1 and e2 lie on opposite sides of the ray, we must treat this as
though the ray intersects only one of the two edges rather than both of them.

On the right side of the figure, the ray intersects e3 and e4 at their common endpoint. But
because the other endpoints of e3 and e4 lie on the same side of the ray, we treat this in the
usual way by recording that the ray intersects both edges.

e4e1

e2

e3

Figure 6: Special Case: Ray Intersects a Vertex

The second special case occurs when the ray wholly includes one of the polygon’s edges. There
are two sub-cases, each of which is depicted in the figure below. On the left side of the figure,
the ray wholly includes e2, which also means that it intersects e1 and e3 at their respective

14

common endpoints with e2. Because the other endpoints of e1 and e3 lie on opposite sides of
the ray, we treat this in the usual way by recording that the ray intersects all three edges.

e6

e1

e2

e3

e4

e5

Figure 7: Special Case: Ray Includes an Edge

On the right side of the figure, the ray wholly includes e5, which also means that it intersects
e4 and e6 at their respective common endpoints with e5. But because the other endpoints of
e4 and e6 lie on the same side of the ray, we must treat this as though the ray intersects only
two of the three edges.

The figure below illustrates the modified ray/edge intersection counting approach described
above.

2

(0,−1) (6,−1)

(2,9) (7,9)

(4,7)

(9,5)

(6,5)

(4,3)

3

3

2

Figure 8: Modified Counting of Ray/Edge Intersections

Input: The input data describes a polygon (as a sequence of vertices), followed by some
number of points, each of which is to be tested for being in the interior of the polygon. The
first line contains a positive integer m ≥ 3 indicating the number of vertices in the polygon.
The next m lines describe these vertices, one per line, each given by a pair of real numbers
indicating its x- and y-coordinate, respectively. On the following line is a positive integer n
indicating how many points are to be tested. The next n lines describe these points, one per
line, as with the vertices. You may assume that none of these points lies on any edge of the
polygon.

Note that the sample data below corresponds to the polygon and the ray endpoints shown in
the figure above.

Output: For each point that is given as input, the program should identify it and report
whether or not it is in the interior of the polygon.

15

Sample input Corresponding output
------------ --------------------
8 (2.5,7.0): interior
4.0 7.0 (3.0,5.0): interior
2.0 9.0 (-2.0,3.0): non-interior
0.0 -1.0 (-1.5,-1.0): non-interior
6.0 -1.0
4.0 3.0
6.0 5.0
9.0 5.0
7.0 9.0
4
2.5 7.0
3.0 5.0
-2.0 3.0
-1.5 -1.0

16

