SE 504 (Formal Methods and Models) The strength/weakness relationship between predicates

Recall that a *predicate* is simply a function that yields a boolean value and that [.] is the *everywhere* operator on predicates; i.e., for a predicate P, the expression [P] is true if P holds in all states (i.e., everywhere) but false if there is at least one state in which P does not hold. Technically,

$$[P] \stackrel{\circ}{=} (\forall x_1, x_2, \dots, x_n \mid : P)$$

where the x_i 's are precisely those variables that occur free in P.

Let P and Q be predicates. Then, with respect to weakness/strength, the possible relationships between them are as follows:

If $[P \Rightarrow Q]$ (equivalently, $[Q \Leftarrow P]$), we say that P is stronger than Q (equivalently, Q is weaker than P).

If each of P and Q is stronger than the other, we say that they *are equivalent*. This makes sense, because

$$[P \Rightarrow Q] \land [P \Leftarrow Q] \equiv [P \equiv Q]$$

If, on the other hand, P is stronger than Q (equivalently, Q is weaker than P), but Q is not stronger than P (equivalently, P is not weaker than Q), we say that P is strictly stronger than Q (equivalently, Q is strictly weaker than P).

If neither P is stronger than Q nor Q is stronger than P, then P and Q are unrelated with respect to weakness/strength.

These are summarized in the following table:

$[P \Rightarrow Q]$	$[P \Leftarrow Q]$	Relationship
true	true	P and Q are equivalent
false	true	P is strictly weaker than Q
true	false	P is strictly stronger than Q
false	false	P and Q are unrelated

In order to demonstrate that $[P \Rightarrow Q]$ is false, it suffices to identify a state in which $P \Rightarrow Q$ is false (i.e., a state that satisfies P but fails to satisfy Q).

In order to demonstrate that $[P \Rightarrow Q]$ is true, it suffices to prove $P \Rightarrow Q$. See Metatheorem 9.16 (and the accompanying discussion) in the text by Gries and Schneider. Such a proof can be of the form taught in the aforementioned text, or it could be a little less formal. One could, for example, consider an arbitrary state s satisfying P and argue persuasively that s also satisfies Q.

Note: An "arbitrary" state is one about which nothing is assumed; students often make the mistake of choosing a particular state (having properties convenient to their purposes) and calling it "arbitrary". **End of note.**

As an example, suppose we have $P: x \ge 1 \land y < x$ and $Q: x \ge 0$, with x and y of type **integer**. Then P is strictly stronger than Q, because $[P \Rightarrow Q]$ holds but $[P \Leftarrow Q]$ does not. The latter follows from $P \Leftarrow Q$ being false in any state in which x = 0. The former is rather obvious, but may be proved in at least the following two ways:

œ	\geq	\cap
\boldsymbol{x}	\leq	U

	$=$ \langle integer arithmetic \rangle
Assume both $x \ge 1$ and $y < x$.	$x=0 \ \lor \ x \geq 1$
$x \ge 0$	$\Leftarrow \langle \ p \Rightarrow p \lor q \ (\text{Gries 3.76a}) \ \rangle$
$= \langle \text{ assumption } x \ge 1 \rangle$	$x \ge 1$
true	$\Leftarrow \langle \ p \land q \ \Rightarrow \ p \ (\text{Gries 3.76b}) \ \rangle$
	$x \ge 1 \land y < x$