
4

(t-'

4t"- -

I
i ~

V

explain how or why he did what he
did, yet he worked effectively, by
himself or in a small team, and could
usually complete the tasks he under-
took within a predictable timescale,
at a fixed cost and with results that
were satisfactory to his clients;
The programmer of today shares

many attributes with the craftsman of
yesterday. He learns his craft by a
short but highly paid apprenticeship
in an existing programming team
engaged in some ongoing project,
and he develops his skills by ex-
perience rather than by reading books
or journals. He knows little of the
logical and mathematical founda-
tions of his profession. He does not
like to explain or document his ac-
tivities. Yet he works effectively, by
himself or in small teams, and he
sometimes manages to complete the
tasks he undertakes at the predicted
time, within the predicted costs, and
to the satisfaction of his client.

In primitive societies of long ago,
the welfare of the community de-
pended on another class of specialist.
Like the craftsman, he was dedicated
to his task and regarded with re-
spect-perhaps tinged with awe-by
his many satisfied clients. Several
names were given to such a man-
seer, soothsayer, sorcerer, wizard,
witch doctor, or high priest. I shall
just call him a high priest.
There were many differences be-

tween the craftsman and the high
priest. One of the most striking was
that the high priest was the custodian
of a weighty set of sacred books, or
magician's manuals, which he alone
was capable of reading. When he was
consulted by his client with some new
problem, he referred to his sacred
books to find some spell or incanta-
tion that had proved efficacious in
the past; and having found it, he told
his client to copy it carefully and use
it in accordance with a set of elab-
orate instructions. If the slightest
mistake was made in copying or in
following the instructions, the spell
might turn into a curse and bring mis-
fortune to the client. The client had
no hope of understanding the nature
of the error or why it evoked the

wrath of his deity-the high priest
himself had no inner understanding
of the ways of his god. The best the
client could hope for was to go right
back to the beginning and start the
spell again. If this did not work, he
went back to the high priest to get a
new spell.
And that brings up another feature

of the priesthood. When something
went wrong, as it quite often did,
somehow it was always caused by the
client's ignorance or stupidity or im-
purity or wickedness. It was never the
fault of the high priest or his god.
When the harvest failed, it was the
high priest who sacrificed the king,
never the other way around.

Present-day programmers share
many attributes with the high priest.
We have many names-coder, sys-
tems analyst, computer scientist, in-
formatician, chief programmer. (I
will just use the word "programmer"
to stand for them all.) Our altars are
hidden from the profane, each in its
own superbly air-conditioned holy of
holies, ministered to night and day by
a devoted team of acolytes, and
regarded by the general public with
mixed feelings of fear and awe ap-
propriate for their condition of
powerless dependence.
An even more striking analogy is

the increasing dominance of our
sacred books, the basic software
manuals for our languages and
operating systems which have be-
come essential to our every approach
to the computer. Only 30 years ago,
our computers' valves and tanks and
wires filled the walls and shelves of a
large room, which the programmer
would enter, carrying in his pocket
his programming manual-a piece of
folded cardboard known as the
FACT CARD. Now the situation is
reversed: the programmer enters a
large room whose walls and shelves
are lined with software manuals, but
in case he wants to carry out some
urgent calculations, he carries in his
pocket-a computer.

The rise of engineering
With the advance of technology in

recent centuries, a new class of

specialist-the professional engi-
neer-has emerged. An engineer's
most striking characteristic is the
manner in which he qualifies for en-
try into his profession. He works out
the long apprenticeship of the crafts-
man and undergoes the brief gradu-
ation or initiation ceremonies of the
high priest, both of which are pre-
ceded by many years of formal study
in schools and in universities. His
education covers a wide range of
topics, including the mathematical
foundations of differential calculus,
the derivation and solution of com-
plex equations, and the physical prin-
ciples underlying the science of ma-
terials, as well as the specific techni-
calities of a particular branch of his
subject and a large catalog of known
design methods and specific practical
techniques. But this is only a start.
During his -professional career, the
engineer continues his education, to
expand his skills and to keep pace with
technological progress, by studying
new books and learned journals and
attending specialized courses. Many
engineers even take a full year off
work to bring themselves up to date
or to reorient themselves toward a
newly developed branch of tech-
nology. The older craftsmen may
complain that the engineer already
knows far more than he needs for the
day-to-day practice of his profession,
but his colleagues and clients will
realize that the weight of background
learning develops his good judgment
and increases his competence and
authority at all times. Even if he uses
a recondite scrap of knowledge only
once in his career, the learning pays
for itself many times over.
We would like to claim that com-

puter programming has transcended
its origins as a craft, has avoided the
temptation to form itself into a
priesthood, and can now be regarded
as a fully fledged engineering profes-
sion. Certainly, we have some right to
this claim. Through our professional
societies we have formulated a code
of professional ethics and a structure
and syllabus of professional ex-
aminations. We discharge our duty to
the community by giving evidence to

IEEE SOFTWARE6

Step 7.2. Let g be the < generation > immediately contained in abuf. If abuf contains a < key >, let k be
this < key > and let csvb be its immediate component; otherwise let k and csvb be < absent >.
Perform construct-record (g,k) to obtain kr.

Step 7.3. If fi contains < keyed > then if k is equal to any < key > in the < record-dataset >, designated by
the <dataset-designator> in fi, or if k is unacceptable to the implementation, then perform
raise-io-condition(< ke-condition>, fv, csvb).

Step 7.4. Perform insert-record(kr, fv) to obtain pos.

Step 7.5. Replace the immediate component of the < current-position > in fi with pos.

Step 7.6. Perform free(g) and delete abuf from fi.

Step 8. Let dd be the < data-description > immediately contained in the < variable> of the < declaration >
designated by cdp. Perform evaluate-data-description-for-allocation(dd) to obtain edd.

Step 9. Perform evaluate-size(edd) to obtain an < integer-value > ,int. If int is unacceptable to the implementa-
tion then perform raise-io-condition(<record-condition>,fv, chs) and optionally perform exit-from-io

Step 10. Perform allocate(edd) to obtain g.

Step 11. Let desc be a <data-description> simply containing <pointer> without other terminal subnodes.
Let epsog be an <evaluated-target> containing the <generation> in the <evaluated-pointer-
set-option> in els. Let agv be an <aggregate-value> containing <pointer-value>: g. Perform
assign(epsog,agv,desc).

Step 12. Let d be the < declaration > designated by the < declaration-designator > in els.

Step 12.1. If the <aggregate-type> of g contains <structure-aggregate-type> then perform initialize-
refer-options(g)

Step 12.2. Perform initialize-generation(g,d).

Step 13. Let abuf be an <allocated-buffer>: <generation>,g. If fi contains <keyed> then attach kk to
abuf. Attach abuf to the < file- opening> in fi.

Step 14. Perform normal sequence.

8.6.4 THE REWRITE STATEMENT

Purpose: The < rewrite-statement > causes replacement of an existing < record > or < keyed-record> in a
< record-dataset >.

8.6.4.1 Execute-rewrite-statement

<evaluated-rewrite-statement>:: = <file-value>
((<key>) <evaluated-from-option>)

Operation: execute-rewrite-statement(rws)
where rws is a < rewrite-statement >.

Step 1. Let erws be an < evaluated-rewrite-statement > without subnodes.

Step 2. Perform Steps 2.1 through 2.3 in any order.

Step 2.1. Let f be the immediate component of the < file-option > in rws. Perform evaluate-file-option(f)
to obtain a < file-value >, fv. Attach fv to erws.

Step 2.2. If rws contains a <from-option> ,fr, then perform evaluate-from-option(fr) to obtain an
< evaluated-from-option > ,efo and attach efo to erws.

government commissions on social
consequences of computing, on
privacy, and on employment. Be-
cause of the great demand for our ser-
vices, our clients and employers offer
us professional salaries, and it is
hardly likely we will refuse them.

But more than this is needed for
true professional status. What is the
great body of professional knowledge
common to all educated program-
mers? Where are the reference li-
braries of standard works on known
general methods and specific tech-
niques and algorithms oriented to
particular applications and require-
ments? What are the theoretical
mnnt'hPmntin!n nr nhucir-nl nrinMI%nl*C

the programming profession is still
low. Don Knuth's books, The Art of
Computer Programming, 3 form an
excellent encyclopedia of known
techniques, but only three volumes
have appeared so far. And how many
programmers consult even those?
Finally, we have only recently come
to a realization of the mathematical
and logical basis of computer pro-
gramming. We can now begin, how-
ever, to construct program specifica-
tions with the same accuracy that an
engineer surveys a site for a bridge or
road, and on this basis, we can now
construct programs proved to meet
their specification with as much cer-
tnintv ne t'hp PnavnPPsrt cqcm1rnnrP thnt

Let me expand on the nature and
consequences of this discovery. It is
like the Greek discovery of axiomatic
geometry-the basis of land measure-
ment for mapmaking and, later, for
plans and elevations used in the
design and construction of buildings
and bridges. It is like the discovery of
the Newtonian laws of motion and
the differential calculus-the basis of
astronomy as well as more mundane
tasks like the navigation of ships and
the direction of artillery fire. It is like
the discovery of stress analysis-the
basis for the reliable and economic
construction of steel frame buildings,
bridges, and oil platforms.

111at111114LlAkUV JJ1Yb%4y,>lVII1y1.;IPIUb La11ILw 4b L119 UH8W111VUL b o"a11Ulillwr 114L|

which underlie the daily practice of his bridge will not fall down. In- L9rge programming
the programmer? troduction of these techniques, ev- future

Until recently, these questions had idenced in such works as Structured futurer * _v * A o4 In the future, we may hope to see a
no answers, but now they are begin- Programming,4 Systematic Pro- radical change in the development
ning to emerge. We can point to both gramming, 5 Principles of Program and life history of large programming
the ACM curriculum for the study of Design,6 A Discipline of Program- proje he chief programmel
computer science1 and the IEEE ming,7and The Architecture ofCon- the architect, will start by discussing
Computer Society curriculum for current Programs, 8 promises to requirements with his client. From
computer science and engineering2 as transform the arcane and error-prone
a corpus of common knowledge for craft of computer programmlng to grammer will be able to guide his
the programmer, though the propor- meet the highest standards of a. . . . ~~~~~client to an understanding of his truetion of computer science graduates in modem engineering profession. needs and avoidance of expensive

features of dubious or even negative
value. From respect for the profes-

The sign N means number (positive integer). sional status of the programmer, the
client will accept and welcome this

The sign 1 means unity. guidance. This kind of mutual under-
. ~~~~~~~~~~~~~~standingand respect is essential toThe sign a + 1 means the successor of a or a plus 1.

any relationship between a profes-
The sign = means is equal to. sional and his client or employer.

1. lEN Specification. The chief program-
mer at this time will sketch out the

2. aeN .D. a=a overall structure of the specification
of a product to meet his client's re-

3. a,bEN.D:a=b.=.b=a quirements. These sketches will serve

4. a,b,c-N .D: a=b. b=c :D. a=c the same role as an architect's pre-
liminary sketches of a building.

5. a=b . bcN :D. aEN Gradually, in orderly fashion and in
close consultation with the client,

6. acN .D. a+LEN details of the design will be slotted

7. a,beN .Ds: a-=b .= . a+ 1 = b+ 1 into the appropriate place within the
structure. This activity will culminate

8. asN -D. a+1.1 in a complete, unambiguous, and
provably consistent specification for

9. keK:. lek :. xeN . xek :D,. x+lek: :D. NDk the entire end product. It will serve
the same role as blueprints in engi-

Mathematicians know these laws as the foundation of arithmetic and number theory to- neering or scaled plans and elevations
day. What are the corresponding laws of programming? in architecture.

8 IEEE SOFTWARE

Undoubtedly, the client will ask to
see and check the full specification
before he gives permission to go
ahead with implementation. I'm
afraid he will get a rude shock. In-
stead of pretty pictures and drawings,
he will see a collection of definitions,
mathematical formulas, and logical
proofs, which he may be ill equipped
to understand. One of the major
problems of the programming pro-
fession is that our technical and struc-
tural decisions are almost invisible;
nothing that can be seen in the fin-
ished program can be illustrated
beforehand by pictures. This sad fact
explains simultaneously the persistent
longevity as well as the basic futility
of program flowcharts.
A proper solution to this com-

munication gap between program-
mers and clients can be discovered by
analogy from other professions.
Before a building project goes into
implementation, the architect pro-
duces from his specification a series
of perspective drawings or even
models, which can be shown to the
client and carefully checked by him.
Before a consumer product goes into
mass production, an engineer pro-
duces a series of working prototypes,
which can be subjected to severe and
exhaustive tests in a variety of simu-
lated circumstances. In the future, a
chief programmer, with the aid of his
programming teams, will'be able to
pursue both of these solutions at the
same time.'

First, the formal specification will
be taken as the basis of a clear, com-
plete, and consistent set of user
manuals and operating instructions,
explaining exactly how to control the
program and how it will behave in all
circumstances, including when things
go wrong. Of course, these manuals
will be illustrated by compelling ex-
amples dealing with the main com-
mon cases, and the examples will be
backed up by well-structured and
well-indexed descriptions of the pro-
gram's full range of capabilities.
These descriptions will explain why
and when the capabilities are needed,
how they can be successfully invoked
in conjunction with other features,

what can go wrong, and how to re-
cover from failure. These manuals
will give the customer a full under-
standing of what his program will
look like and what it will do for him,
long before a single word of code is
written. Because they will be firmly
based on a simple mathematical
model, they will be much clearer,
much more complete, and much
shorter than present-day manuals-
just as Newton's Laws of Motion are
shorter and more illuminating than the
planetary observations of Tycho de
Brahe.
At the same time, the chief pro-

grammer or his colleagues might con-
struct a prototype of the program as a
whole or of its more vital parts. Such
a prototype could be cheaply pro-
grammed as a simulation, perhaps
running on a small model of the
database held in the main store of a
computer much larger and faster than
the one on which the eventual pro-
gram will run. These simulations
would be exact scale models of the
final design and could be used by the
client to check the details of the
design and suggest alterations before

of the original requirements and for-
mal specifications, it will be possible
to devise a series of rigorous and
searching acceptance tests, which
could be included in the contract bet-
ween the client and the implementors.
Some of these tests could be kept
secret from the implementors so that
there would be no temptation for
them to orient their work toward
passing the tests, rather than meeting
the specification. This rigorous kind
of secret acceptance test will be made
possible only by the corresponding
mathematical rigor of the original
specification. If the product fails the
test and the implementors claim that
the test is unfair, any competent logi-
cian or mathematician will be able to
decide who is right.

Implementation. The next stage
will be to start work on the overall
design of a program to meet the
agreed and tested specification. The
major components of the design will
be identified and the interfaces be-
tween them defined with mathe-
matical precision. Some of the re-
quired components will be selected or

"Computers are extremely flexible and powerful tools,
and many feel that their application is changing the face

of the earth. . .(But) their influence as tools might turn out
to be but a ripple on the surface of our culture, whereas
I expect them to have a much more profound influence

in their capacity as intellectual challenge."
-E.W. Dijkstra, 1972

the project goes into the more expen-
sive stage of design and implementa-
tion.
The construction of models and

prototypes will not be cheap but will
be amply justified in a large and im-
portant project by the chance it will
give to modify the design in the light
of informed customer experience.
Recovery from mistakes in design is
much more expensive when they have
been cast into the concrete of a
million-line program.
Another important task could be

completed at this stage. On the basis

perhaps adapted from a library of ex-
isting components described in the
engineering textbooks. The remain-
ing components will be specified with
the same techniques and with the
same care used in the earlier design of
the complete program. But most im-
portant, the chief programmer will
convince himself and his colleagues
by mathematical proof that if each of
the components meets its specifica-
tion, then when all the components
are assembled, the overall product
will meet the overall specification
agreed to by the client. In the future,

April 1984 9

this will be taken for granted, just as
we now take for granted the fact that
components of a bridge ordered to
given measurements will fit together
when they are assembled on site. So
we hope to eliminate the so-called
"system integration" phase of many
current projects, in which bugs are

painfully detected and laboriously
removed from the interfaces between
the components. This is the most ex-

pensive and unpredictable of all the
phases of a large project; the fact that
it is the final phase only increases the
misery.
Why is debugging so expensive,

particularly at the stage of system in-
tegration and afterwards in program
maintenance? The reason is clear: the
bugs involved are so subtle that they
escaped the designer's attention at a

time when the design was still simple
and options were still open. They also
escaped the programmer's attention
when he was devoting his best in-
tellect to each line of code. Now they
must be isolated in the context of a
million-line program, and they must
be eliminated under the additional
and even more onerous constraint of
changing as few of those million lines
as possible! No wonder program

maintenance during the whole life of
a program is often many times as ex-

pensive as the original implementa-
tion. Using the new specification and
design techniques of mathematics
and logic, we hope to eliminate most
of that cost by never creating the bugs
in the first-place.
When the design has progressed

sufficiently, it, will be possible to
build teams and make plans and
schedules to estimate code size and
performance and, above all, to check
preliminary estimates by calculating
overall implementation costs and
timescales. This corresponds to the
activity of quantity surveying in ar-

chitecture and requires experience
and judgement at least as much as

mathematical technique. Neverthe-
less, the estimates will be more ac-

curate than they usually are now-

adays because they will be based on

complete, consistent, and stable
specifications and designs.

At last the project will be ready to
go into the construction phase. Now
large teams of programmers can be
engaged, perhaps from independent
contractors or software houses, and
all of them can work concurrently on
different parts of the design without
further consultation. Each program-

mer will use standard techniques of
stepwise development to ensure that
his code meets its specification with
minimal risk of the intrusion of error.

When he has proved that his code is
correct, both the code and proof will
be signed off by a highly paid
checker, and the code will then be
typed into a computer.

Delivery. When all the code is com-
plete and compiled from its high-level
language and loaded into the com-

puter, it will be subjected to the im-
plementor's tests, which it will usual-
ly pass. It will then be delivered to the
customer and pass his secret accep-
tance tests as well. Since all manuals

will have been available for training,
it will go into immediate service.
Nothing can possibly ever go wrong.

What, never? Well hardly ever! On
the rare occasion of failure, a full and
independent enquiry will trace the
cause of the fault to the persons

responsible. An independent assess-

ment will be made to determine
whether the fault is an isolated one or

whether it is a symptom of more

serious and widespread flaws in the
logic of the design or in the technique
of implementation. In the latter case,
large parts of the documentation and
code and proofs will be rechecked by
experts before the product is rede-
livered to the customer and submitted
to newly constructed secret accep-
tance tests. The payment of aD-

10

propriate penalties to the customer
will ensure that this kind of default is
not too frequent.

In the years after the first delivery,
it is very likely that the customer's re-

quirements will change, and the
program must change with them.- Be-
cause of the clarity of program struc-
ture and the completeness of design
documentation, it will be quite easy
to determine which parts of the
design and coding need to be changed
in order to meet a new requirement.
Because all the assumptions and
obligations of each piece of code will
have been made explicit, it will be
relatively easy to prove that a new

piece of code which meets the same
obligations can be safely inserted. If
the obligations can no longer be met,
it will be possible to identify all other
pieces of code which rely on these
obligations so that this code can be
changed too. When a suggested
change violates the fundamental
structure of a program, the program-

mer will rack his brains to think of an
alternative, and if he can't, he will
know in advance that part or all of
the program must be rewritten and
check that the cost is acceptable.
Thus, it will be possible to escape the
wild goose chase after consequential
effects of each change made to a large
program that is common today.
That concludes my description of

the life cycle of the large software
project of the future. The description
hardly makes reference to the most
common feature of present program-
ming practice, the program bug. I
have left it out because it won't exist.
There will be no bugs. There will be
no chance for a bug to germinate or
to propagate. Every stage of the
specification and design and coding

IEEE SOFTWARE

"It is reasonable to hope that the relationship between
computation and mathematical logic will be as fruitful in the
next century as that between analysis and physics in the last.
The development of this relationship demands a concern for

both applications and for mathematical elegance."
-John McCarthy, 1967

will have been checked with mathe-
matical rigor.
An essential feature of the work of

a professional in any discipline is that
he organize his working environment
and his working methods to ensure
that he does not make mistakes. Most
pilots never crash a plane. Most sur-
geons never kill a patient. Most civil
engineers never build a bridge that
collapses. Until each programmer
displays this kind of professional ac-
curacy and responsibility, all our
claims to professional status will be
subject to doubt. Every time a mem-
ber of the public blames "the compu-
ter" for an error made by a program-
mer, it demeans our profession.
Every time a supplier of software
writes a disclaimer of direct and con-
sequential damages arising from its
errors, it demeans our profession. We
must always confess that it is the pro-
grammer who bears the responsibility
for mistakes, not the dumb but ac-
curate machine. We must always
point out that unfair disclaimers of
responsibility are (or should be) for-
bidden by law.
Of course, my remarks apply only

to large and important projects. In
smaller, less important projects,
many of the stages can be merged or
omitted, and for the smallest projects
(for example, a program written for a
single run by its own author), none of
what I have said is relevant. One does
not use structural engineering analy-
sis to build a sandcastle. But neither
does one choose the prize-winning
builder of sandcastles as architect for
a tower block of offices in a city.

Comparison with other
engineering disciplines
My description of the planning of

large-scale programming projects
follows closely the standard practices
in more-traditional branches of
engineering. A conventional engi-
neering design passes through the
established phases of requirements
analysis, specification, design, cost-
ing, production engineering, drawing
office, prototyping, testing, tool build-
ing, quality assurance, etc. It is many

years before the design reaches the pro-
duction floor.
Many present-day data processing

departments are organized on the
basis of a similar division of labor
among systems analysts, program-
mers, technical authors, coders, tes-
ters, and finally maintenance pro-
grammers. But all too often this
apparently logical division of labor
leads to an awkward problem. Grad-
ually, the size of the maintenance
programming department increases
until it outnumbers all the other
groups put together. And it is increas-
ingly difficult to recruit and retain
computer programmers for this bor-
ing, ill-regarded, and often poorly
paid occupation. One likely cause for
this problem is that the interfaces be-
tween the various groups of program-
mers have been less precisely defined
than in a traditional engineering
workshop, and that there is no proper
quality control on the project docu-
mentation as it passes from one

This selection of early astronomical in-
struments was used at the Collegium Maius
(Old University), Cracow, Poland, around
1500 when Nicolaus Copernicus, the founder
of modern astronomy, studied there.

-Erich Lessing/Magnum

April 1984

group to the next. As a result, each
group does its best with what it gets,
and it is the poor maintenance pro-
grammer at the end of the chain who
has to pick up the pieces.

In my view, the standards that
must be met by project documenta-
tion as it passes between groups are
standards of logical accuracy and
completeness, which are character-
istic of mathematics. A group that
takes over such documentation should
have the intellectual tools required to
check its validity; they also should
have the right, or rather the respon-
sibility, to reject a project that fails to
meet an adequate standard. Cases of
dispute should be resolved by appeal
to the line technical manager, who
should be experienced and capable of
resolving the dispute in a technically
sound fashion. It is very unfortunate
that many heads of data processing
departments are promoted for
achievements in accounting, sales, or
electronic engineering. They have lit-
tle understanding of the nature of
computer programming and even less
of the logical and mathematical
techniques required for its control. It
is the managers who could benefit
most from the new disciplines; per-
haps that is why, they are sometimes
the most resistant to change.

Reliability. In principle, we should
find it much easier than other pro-
fessional engineers to achieve the
highest standards of quality, ac-
curacy, and predictability of time-
scale and cost, because the raw ma-
terials with which we work are much
simpler, more plentiful, and much
more reliable. Our raw materials are
the binary digits in the stores and
registers, disks and tapes of our com-
puters. Our problem is that we have
too many of them rather than too
few. These bits are manipulated ex-
actly in accordance with our instruc-
tions at a rate of millions of opera-
tions per second for many weeks or
months without mistake; when the
hardware does go wrong, it is the
engineer, not the programmer, who is
called upon to mend it.

12

That is why computer program-
ming should be the most reliable of
all professional disciplines. We do
not have to worry about problems of
faulty castings, defective compon-
ents, careless laborers, storms, earth-
quakes, or other natural hazards; we
are not concerned with friction or
wear or metal fatigue. Our only prob-
lems are those we make for ourselves
and our colleagues by our overam-
bition or carelessness, by our failure
to recognize the mathematical and
theoretical foundations of program-
ming, and by our failure to base our
professional practice upon them.
Yet in some ways the engineers

have an advantage over us. Because
they are dealing with continuously
varying quantities like distance, tem-
perature, and voltage, it is possible
for them to increase confidence in the
reliability of an engineering product
by testing it at the extremes of its in-

"In order to use machines
either to aid research or to aid
teaching, the results, methods,
and spirit of formalisation in
mathematical logic are to
play an essential role."

-Hao Wang, 1967

tended operating range-for exam-
ple, by exposure to heat and cold or
by voltage margins. We do the same
in program testing, but in our case it
is futile. First, we have to deal with
impossibly many more variables, and
second, these variables take discrete
values for which interpolation and
extrapolation are wholly invalid. The
fact that a program works for value
zero and value 65 535 gives no con-
fidence that it will work for any of the
values in between, unless this fact is
proved by logical reasoning based on
the very text of the program itself.
But if this logical reasoning is correct,
then there was no need for the test in
the first place. That is why it is an
essential prerequisite to the improve-
ment of our professional practices
that we learn to reason effectively
about our programs, to prove their

correctness before we write them, so
that we know that they will not only
pass all their tests but will go on
working correctly forever after.

Structure. Other engineers have a
further advantage over program-
mers. When they split a complex
design into a number of component
parts to be designed independently of
each other, they can take advantage
of the spatial separation of the parts
to ensure that there can be no unex-
pected interaction effects. If the parts
are wholly unconnected, this is very
easy to check by simple visual inspec-
tion. Thus, when we turn our car to
the left, we may be very confident
that this will have no direct effect on
the cigarette lighter, the rear-view
mirror, or the carburetor. When such
interaction effects do occur, they are
recognized as the most difficult to
trace and eliminate.

But in the programming of conven-
tional computers, there is no similar
concept of spatial separation. Any in-
struction in a binary computer pro-
gram can modify any location in the
store of the computer, including
those that contain instructions. And
if this happens incorrectly only once
in a thousand million instructions ex-
ecuted, the consequences for the
whole program will be totally un-
predictable and uncontrollable.
There is no hope that a prior visual
inspection of the binary content of
store will enable us to check that such
interaction cannot occur or to find
the cause of its occurrence after-
wards. There is no structure or isola-
tion of components in a binary com-
puter program, other than that which
has been carefully designed into it
from the start and maintained by the
most rigorous discipline throughout
implementation.

In spite of this, the programmer is
often asked to include some feature
in his program as an afterthought,
and the only quick way to do this is to
insert new instructions which cross all
the boundaries between the carefully
isolated components and violate all
the structural assumptions on which
the original design was based. It

IEEE SOFTWARE

Johannes Kepler, German astronomer and
mathematician, died in this room in Regens-
burg, West Germany, in 1630. On the writing
desk is his last letter about his instruments,
serving as a kind of will.

-Erich Lessing/Magnum

would be repugnant to an engineer to
introduce direct cross-coupling ef-
fects between the steering and car-
buretor of a motor car or the tape-
decks and floating-point unit of a
computer. A programmer is all too
willing to do his best, and his profes-
sion gets a bad name when unpre-
dicted side effects occur.
A partial solution to this problem

lies in use of a high-level language like
Algol 60 with secure rules governing
the scope, locality, and types of vari-
ables. In such a language the pro-
grammer can declare the structure of
his program and data, stating which
groups of variables are to be accessed
or changed by which parts of his pro-
gram. An automatic compiler can
then check that the appropriate disci-
plines have been observed through-
out the whole of a large program and
can, therefore, give the programmer
the same confidence as the engineer
gains from spatial separation of his
components. Further confidence can
be gained by running the program on
a machine like the Burroughs 5500,
which makes similar checks while the
program is running. In better-estab-
lished engineering disciplines, the

observance of such elementary safety
precautions has long been enforced
by legislation. It is the law that dic-
tates the measures that prevent un-
wanted interaction effects between an
industrial machine and the body of its
operator.

Tools of the trade. This brings me
to the final disadvantage suffered by
the programmer, the poor quality of
the tools of his trade. I refer to his
programming languages, operating
systems, utility programs, and library
subroutines, all of which are supplied
in profusion by the manufacturer of
his computer. Many of these are so
complicated that mastery of them ab-
sorbs all his intellectual efforts, leav-
ing him little energy to apply to his
client's original problem. Some oper-
ating systems are so poorly designed
that they require 20 reissues (or
"releases"), spread over a decade,
before the original design faults are
rendered tolerable. And they are so
unreliable that each issue has a thou-
sand faults corrected by the next
issue, which introduces a thousand
new faults of its own. When the
agony of reissues finally comes to an
end, instead of being left free to re-
joice, the poor programmer is cajoled
or forced into accepting an early issue
of some "new" product. Such com-
plexity, unreliability, and instability
of basic tools were doubtless endured
by engineers of each newly emergent
discipline, but gradually the engineers
developed better tool kits for their
own use. That task-the design of
programming tools which are reli-
able, stable, convenient, and above
all simple to understand, control, and
use-still faces the programming pro-
fession today.
A crude measure of the simplicity

of an engineering tool is the length of
the manual required to give a full and
complete account of how to use it and
avoid misusing it. At present our
software manuals are both volumi-
nous and inadequate. I believe that a
solution to our problems can be
sought in the design of software
which can be completely described by
shorter manuals. If an electronic

IEEE SOFTWARE

engineer finds a method of satisfying
with 20 components a need which has
hitherto required 30, the value of his
discovery is immediately recognized
and is often highly rewarded by fame
or by money. When a software engi-
neer designs a product that can be ful-
ly defined in 20 pages whose rival
product has been inadequately de-
fined in 100 pages, his achievement is
just as great and possibly more ben-
eficial, for he has achieved an econ-
omy in our scarcest resource-not
silicon, or even gold, but our own
precious human intellect.

How do we get there
from here?
My description of the professional

achievement of programmers of the
future may seem to be nothing but an
academic dream-a pleasant one for
our clients, but perhaps something
more like a nightmare for us. How
ever are we going to make such a fan-
tastic improvement in our working
methods? We are like the barber-
surgeons of earlier ages, who prided
themselves on the sharpness of their
knives and the speed with which they
dispatched their duty-either shaving
a beard or amputating a limb. Im-
agine the dismay with which they
greeted some ivory-towered academic
who told them that the practice of
surgery should be based on a long and
detailed study of human anatomy, on
familiarity with surgical procedures
pioneered by great doctors of the
past, and that it should be carried out
only in a strictly controlled bug-free
environment, far removed from the
hair and dust of the normal barber's
shop. Even if they accepted the
validity and necessity for these im-
provements, how were they ever to
achieve them? How could they re-
educate all those hairdressers in the
essential foundations of surgery?
Clearly a two-week course in Struc-
tured Surgery is all that we can readi-
ly afford. But more is needed, much
more.

Professional publications. First we
need good books and journals which
can be studied by programmers and

programming teams to familiarize
themselves with the concepts of
mathematical proof and show how
proof methods can be applied to the
everyday practice of program specifi-
cation, design, and implementation.
(Such books are beginning to appear
in the publishers' lists. 9-13)
Most of the books and articles on

programming methods are of necessi-
ty illustrated only by small examples.
Indeed, many of the programming
methods advocated by the authors
have never yet been applied to large
programs. This is not a defect of their
research; it is a necessity. All ad-
vances in engineering are tested first
on small-scale models, in wave tanks,
or in wind tunnels. Without models,
the research would be prohibitively
expensive, and progress would be
correspondingly slow.

Nevertheless, I believe that the time
has come to attempt to scale up the
use of formal mathematical methods
to industrial application. This can
best be achieved by collaborative
development projects between a
university or polytechnic and an in-
dustrial company or software house.
Such a project might be an entirely
new program, or it might be a restruc-
turing or redesign of some existing
software product in current use,
perhaps one which has lost its original
structure as a result of constant
amendment and enhancement. The
great advantage of these joint proj-
ects is that they bring home to aca-
demic researchers some of the exi-
gencies of working on much larger
programs, and they give practical
-training in formal methods to larger
numbers of experienced program-
mers in industry. This is technology
transfer in its best sense-a transfer
of benefits in both directions.

Systems Programmer

Education. As I have emphasized
already, the major factor in the wider
propagation of professional methods
is education, an education which con-
veys a broad and deep understanding
of theoretical principles as well as
their practical application, an educa-
tion such as can be offered by our
universities and polytechnics. Lec-
turers and professors regard it as their
duty and privilege to keep abreast
with the latest developments in their
subjects and to adapt, improve, and
expand their courses to pass on their
understanding to their students.
Many entrants to computer science
courses have acquired a familiarity
with the basic mechanics of program-
ming at their preparatory schools; at
the university level they are ready to
absorb the underlying mathematical
principles, which will help them con-
trol the complexity of their designs
and the reliability of their implemen-
tations.

Over the next decades, while the
graduates of computer science
courses are entering their profession,
we will have an extremely awkward
period. Almost -none of the senior
professionals and managers will have
any knowledge or understanding of
the new methods, while those whom
they recruit will seem to them to be
talking academic gibberish. This
could be a grave hindrance to the de-
velopment of our profession. Further-
more, it would be a terrible wasted op-
portunity. One of the major benefits
of the technique of mathematical ab-
straction is that it enables a chief pro-
grammer or manager to exert real
technical control over his teams,
without delving into the morass of
technical detail with which his pro-
grammers are often tempted to over-
whelm him.

$80,000oplus car
We want to hear from you if you have at least 3 years HAL programming ex-
perience with LUR-background in the LRR area would be an advantage.
You'll also need in-depth maintenance and support knowledge for large-scale
LUR/RD or LUR/RO systems, running with 1DR4 83.7 or IDR4 MID in a
multi-access spool configuration.

Advertisement in IEEE Software, 2001.

April 1984 15

"It has long been my personal view that the separation of
practical and theoretical work is artificial and injurious. Much
of the practical work done in computing, both in software and
in hardware design, is unsound and clumsy because the people

who do it do not have any clear understanding of the
fundamental principles underlying their work. Most of the

abstract mathematical and theoretical work is sterile because it
has no point of contact with real computing. One of the
central aims of the Programming Research Group as a

teaching and research group has been to set up an atmosphere
in which this separation cannot happen."

-Christopher Strachey, 1974

The solution to this problem is for
ambitious senior programmers to
make the effort now to gain the
necessary mastery of the subject, thus
ensuring their future effectiveness as
chief programmers, technical man-
agers, and technical directors of their
companies and institutions.
One way of acquiring a profes-

sional reorientation of this kind is to
take a specialist postgraduate, post-
experience course in a new and im-
portant subject. Thus, an electronic
engineer might now be going back to
university to study VLSI design, or
an industrial chemist might be taking
a master's course in polymer science
or genetic engineering offered by
some forward-looking university or
polytechnic. I believe that ambitious
programmers should not be reluctant
to follow the example of the well-
established engineering disciplines.
That is why at Oxford University we
have instituted a new MSc course in
computation, devoted primarily to
the objective of improving program-
ming methods and ensuring their
wider application. A similar course is
offered at the Wang Institute in the
United States.

In 1828, on the occasion of the
grant of a Royal Charter to the In-

stitution of Civil Engineers, Thomas
Tredgold defined civil engineering as
"the art of directing the great sources
of power in Nature for the use and
convenience of man." Many branches
of engineering have been established

since that date. They have all been
concerned with capturing, storing,
and transforming energy, or with
processing, shaping, and assembling
materials. Computer programmers
work with neither energy nor ma-
terials, but with a more intangible
concept. We are concerned with cap-
turing, storing, and processing infor-
mation. When the nature of our ac-
tivities is more widely understood,
both within and outside our profes-
sion, then we will be deservedly re-
cognized and respected as a branch of
engineering. And I believe that in our
branch of engineering, above all
others, the academic ideals of rigor
and elegance will pay the highest divi-
dends in practical terms of reducing
costs, increasing performance, and in
directing the great sources of com-
putational power on the surface of a
silicon chip to the use and convenience
ofman.a

References
1. ACM Recommended Curricula for

Computer Science and Information
Processing Programs in Colleges and
Universities, 1968-1981, ACM Press,
New York, 1981.

2. 1983 IEEE Computer Society Model
Program in Computer Science and
Engineering, IEEE-CS Press, Silver
Spring, Md., 1983.

3. D. E. Knuth, The Art of Computer
Programming, Vol. 1, 2, and 3,
Addison-Wesley, Reading, Mass.,
1974 (2nd ed.), 1981 (2nd ed.), and
1973.

4. 0. J. Dahl, E. W. Dijkstra, and
C. A. R. Hoare, Structured Pro-
gramming, Academic Press, New
York, 1972.

5. N. Wirth, Systematic Programming,
Prentice-Hall, Englewood Cliffs,
N.J., 1973.

6. M. A. Jackson, Principles of Pro-
gram Design, Academic Press, New
York, 1975.

7. E. W. Dijkstra, A Discipline ofPro-
gramming, Prentice-Hall, Engle-
wood Cliffs, N. J., 1976.

8. P. B. Hansen, The Architecture of
Concurrent Programs, Prentice-
Hall, Englewood Cliffs, N. J., 1977.

9. S. Alagic and M. A. Arbib, The
Design of Well-Structured and Cor-
rect Programs, Springer-Verlag,
1978.

10. D. Gries, ed., Programming Method-
ology, Springer-Verlag, New York,
1978.

11. C. B. Jones, Software Development,
A Rigorous Approach, Prentice-
Hall, Englewood Cliffs, N.J., 1980.

12. J. Welsh and R. M. McKeag, Struc-
tured Systems Programming, Pren-
tice-Hall, Englewood Cliffs, N.J.
1980.

13. D. Gries, The Science of Computer
Programming, Springer-Verlag, New
York, 1981.

Tony Hoare, a professor of computation
at the University of Oxford, worked for
eight years as a programmer, manager,
and research scientist with a small com-
puter manufacturer. He is the recipient of
several honors for his contributions to the
study of computer programming lan-
guages and is generally famed for Hoare's
Law: Inside every large program there is a
small program trying to get out. He re-
ceived hisMA from Oxford in classical lan-
guages, literature, history, and philosophy.
The author's address is Oxford Univer-

sity Computing Laboratory, Program-
ming Research Group, 45 Banbury Rd.,
Oxford OX2 6PE England.

IEEE SOFTWARE16

