
CMPS 260 (Theoretical Foundations of Computer Science)
The Pumping Theorem for Regular Languages

Here we state and prove the Pumping Theorem (which is often referred to as the Pumping
Lemma) for regular languages, and then use it to prove the non-regularity of several languages.

First we state the following auxiliary lemma, as it is used in the proof of the Pumping Theorem.

Lemma: Let q be a state in a DFA and y be a string such that the path beginning at q and
spelling out the string y ends at q. Then, for all i ≥ 0, the path beginning at q and spelling
out yi ends at q.

Proof: omitted, as it would only complicate what is an obvious result!

Theorem: Let L be a regular language. Then there is a constant n (the value of which is
the number of states in the minimal DFA that accepts L) such that, for every string w ∈ L of
length n or greater, there exist strings x, y, and z satisfying w = xyz, |xy| ≤ n, and |y| > 0
such that, for all i ≥ 0, xyiz ∈ L.

Proof: Assume that L ⊆ Σ∗ is regular, and let M be a DFA such that L = L(M). Let n be
the number of states in M , and let w = a1a2 · · · a|w| ∈ L, where |w| ≥ n and ak ∈ Σ for each
k. For k satisfying 0 ≤ k ≤ |w|, let wk = a1a2 · · · ak be the prefix of w of length k. Let qk be
the state at the end of the path from the initial state spelling out wk. Then the sequence of
states visited along the path is q0, q1, q2, . . . , qn, . . . , q|w|. There being only n states in M , the
Pigeonhole Principle tells us that, among the first n + 1 states in that sequence, at least one
of them is repeated. Which is to say that there exist j and m satisfying 0 ≤ j < m ≤ n such
that qj = qm. It follows that there are paths

(a) from the initial state to qj spelling out x = a1a2 · · · aj ,
(b) from qj back to itself spelling out y = aj+1aj+2 · · · am, and
(c) from qj to q|w| spelling out z = am+1am+2 · · · a|w|.

Applying the above lemma to (b), we get

(d) for all i ≥ 0, there is a path from qj back to itself spelling out yi.

From (a), (c), and (d), it follows that, for all i ≥ 0, xyiz ∈ L. End of proof

Notice that the Pumping Theorem describes a necessary condition for a language to be regular.
That is, it says that for L to be regular, it must possess a particular property. (The theorem
does not say that no non-regular language possesses that same property. Indeed, some non-
regular languages do have that property.)

To state it a bit more formally, the Pumping Theorem is of the form

L is regular ⇒ L satisfies P

where P is the rather complicated condition stated in the theorem. Recall from Propositional
Logic that an implication A ⇒ B and its contrapositive ¬B ⇒ ¬A (which we can also write as

1

¬A ⇐ ¬B) are equivalent. Thus, the Pumping Theorem is equivalent to its contrapositive

¬(L is regular) ⇐ ¬(L satisfies P)

The Pumping Theorem tells us that to show that a language L is not regular, it suffices to show
that L does not possess property P . But P is a fairly complicated property! Exactly what
would be required to show that a language does not possess that property? Well, if we were
to state the Pumping Theorem in more formal terms (using the notation of predicate logic), it
would look like this:

L is regular ⇒
(∃n : n > 0 ∧ (∀w : (w ∈ L ∧ |w| ≥ n) ⇒
(∃x, y, z : w = xyz ∧ |y| > 0 ∧ |xy| ≤ n ∧ (∀i : i ≥ 0 ⇒ xyiz ∈ L))))

The contrapositive —the antecedant of which we find by several applications of DeMorgan’s
laws, namely ¬(P ∧ Q) = ¬P ∨ ¬Q, ¬(P ∨ Q) = ¬P ∧ ¬Q, ¬(∀x : Q) = (∃x : ¬Q), and
¬(∃x : Q) = (∀x : ¬Q)— is as follows:

L is not regular ⇐
(∀n : n > 0 ⇒ (∃w : w ∈ L ∧ |w| ≥ n ∧
(∀x, y, z : w = xyz ∧ |y| > 0 ∧ |xy| ≤ n ⇒ (∃i : i ≥ 0 ∧ xyiz /∈ L))))

In words, this says that L is not regular if, for every positive integer n, there exists a string
w ∈ L of length at least n such that, for every x, y, and z satisfying w = xyz, |y| > 0, and
|xy| ≤ n, there is some nonnegative integer i for which xyiz /∈ L.

Thus, to prove that a language L is not regular, it suffices to

(1) Let n > 0 be arbitrary.

(2) Choose a string w ∈ L of length at least n.

(3) Identify every possible way to choose strings x, y, and z satisfying w = xyz, |y| > 0, and
|xy| ≤ n, and partition them into cases (such that all the choices covered by any one case
can be treated in a uniform manner).

(4) For each case arising from (3), find a value of i for which xyiz /∈ L.

Example 1: Show that {aibj : i < j} is not regular.
Solution: Let n > 0 be arbitrary, and choose w = anbn+1. Every choice of x, y, and z satisfying
the three conditions described in (3) above is such that x = ap, y = aq and z = an−p−qbn+1 for
some p ≥ 0 and q > 0. Choosing i = 2 we have

xy2z = ap(aq)2an−p−qbn+1 = apa2qan−p−qbn+1 = ap+2q+n−p−qbn+1 = aq+nbn+1

But q + n ≥ n+ 1 (due to the fact that q > 0), which means that xy2z /∈ L.

2

Example 2: Show that L = {ap : p is prime} is not regular.
Solution: Let n > 0 be arbitrary, and choose w = ap, where p is the smallest prime number
greater than or equal to n. (It is well known that there are infinitely many primes; hence p
exists.) Every choice of x, y, and z satisfying the three conditions described in (3) above is
such that x = aq, y = ar and z = ap−q−r for some q ≥ 0 and r > 0. To complete the proof, we
must find a value for i that makes xyiz a non-member of L. We have

xyiz = aqariap−q−r = ap+ri−r = ap+r(i−1)

Thus, our problem boils down to finding a value for i such that p + r(i − 1) is non-prime.
Choose i = p + 1. Then we get p + r(i − 1) = p + r(p + 1 − 1) = p + rp = p(1 + r), which is
the product of two numbers greater than one and hence is not prime.

Example 3: Show that L = {(ab)ibi : i ≥ 0} is not regular.
Solution: Let n > 0 be arbitrary, and choose w = (ab)nbn. Considering every possible choice
of x, y, and z satisfying the three conditions described in (3) above, we get the following cases:

Case 1: y is of even length and begins with a. That is, y = (ab)q for some q > 0. Then
x = (ab)p for some p ≥ 0 and z = (ab)n−p−qbn. Taking i = 0, we have

xy0z = (ab)p(ab)q·0(ab)n−p−qbn = (ab)n−qbn

which is not in L because there are fewer occurrences of ab than of the b’s that follow.

Case 2: y is of odd length and begins with a. That is, y = (ab)qa = a(ba)q for some q ≥ 0.
Then x = (ab)p for some p ≥ 0 and z = b(ab)n−p−q−1bn. Taking i = 2, we have

xy2z = (ab)p((ab)qaa(ba)q)b(ab)n−p−q−1bn

which is not in L because it has aa as a substring. (From the definition of L it is clear
that none of its members has aa as a substring.)

Case 3: y is of even length and begins with b. That is, y = (ba)q for some q > 0. Then
x = (ab)pa for some p ≥ 0 and z = b(ab)n−p−q−1bn. Taking i = 2, we have

xy2z = (ab)pa(ba)2qb(ab)n−p−q−1bn = (ab)p+2q+1+n−p−q−1bn = (ab)n+qbn

which is not in L because it has more occurrences of ab than of the b’s that follow (recall
that q > 0).

Case 4: y is of odd length and begins with b. That is, y = b(ab)q for some q ≥ 0. Then
x = (ab)pa for some p ≥ 0 and z = (ab)n−p−q−1bn. Taking i = 0, we have

xy0z = (ab)pa(b(ab)q)0(ab)n−p−q−1bn = (ab)pa(ab)n−p−q−1bn

which is not in L because it, unlike any member of L, it contains an occurrence of aa.
(Note: To justify the claim that (ab)pa(ab)n−p−q−1bn contains an occurrence of aa, we
show that n−p−q−1 > 0, or, equivalently, n > p+q+1. We have |x| = |(ab)pa| = 2p+1
and |y| = |b(ab)q| = 2q + 1. Recall that we need to consider only those choices of x and
y satisfying |xy| ≤ n, which here translates into (2p + 1) + (2q + 1) ≤ n. With a little
algebra, this yields n > 2p+ 2q + 1, which implies the desired result.)

3

