
CMPS340 File Processing
Notes on Coding and Data Compression

R. McCloskey

Still under construction...

Coding has to do with representing data or information using a string of symbols over some
alphabet.1 Often the term is used in referring to the translation of data represented by a string
over one alphabet into a string over a different alphabet. The widely used ASCII (“American
Standard Code for Information Interchange”), for example, associates a bit string of length
seven to each of the 27 members of what could be called the “ASCII alphabet”, which contains
just about every character commonly used in the English language, including the roman letters
(both lower and upper case), decimal digits, and common punctuation symbols, as well as some
control characters (e.g., line feed, carriage return, backspace).2 Given that the character is
a basic form of data and that electronic computers represent data in the form of bit strings, it
is only natural that some such coding standard be adopted.

Data compression refers to a procedure by which, for some alphabet A, one derives a string
y ∈ A∗ from a given string x ∈ A∗ such that y is (we hope) shorter than x but such that
x is recoverable from y by an inverse procedure known, naturally, as decompression. This
is depicted in the nearby figure, where we have denoted by f the function computed by the
compression procedure and by g its inverse (the function computed by the decompression
procedure). Note that it is vital for f to have an inverse, which is to say that f must be
injective (or one-to-one, if you prefer), meaning that, for every pair of strings x0 and x1,
x0 6= x1 implies f(x0) 6= f(x1) (or, equivalently, f(x0) = f(x1) implies x0 = x1). Suppose, to
the contrary, that x0 and x1 were distinct strings satisfying f(x0) = y = f(x1). Then, given y,
the decompression procedure would have no way of determining which of x0 or x1 should be
its output.

+-------------+ +---------------+

x ---->| compression |----> y=f(x) ---->| decompression |----> x=g(f(x))

+-------------+ +---------------+

Among the benefits of data compression are reduced use of storage space and faster transmission
of data over computer networks.

To measure the effectiveness of compression function f when applied to a particular string x,
we use the compression ratio |f(x)|

|x| , where |z| denotes the length of z. The smaller the ratio,

1An alphabet is simply a set of symbols, such as {a, b, c}. If x is a string composed of symbols drawn from
alphabet A, we say that x is a string over A. The set of all such strings is denoted by A∗; hence we can also
express this by x ∈ A∗.

2There are various extensions to ASCII that encode each character using eight bits rather than only seven.
This allows the alphabet to be expanded to 28 characters so as to include some Greek letters (e.g., α, β) and
mathematical symbols (e.g., ≤, ÷,

√
).

1

the more compression that was achieved. (One could just as well use the reciprocal |x|
|f(x)| , in

which case a larger value would indicate better compression.)

Interestingly, it is not possible to devise an injective function f such that |f(x)| < |x| for every
string x. In fact, we can claim something even stronger:

Theorem: Let A be an alphabet with at least two members, and let f : A∗ → A∗ be an
injective function. Then, for every n > 0, there exists a string x ∈ A∗ of length n such that
|f(x)| ≥ |x|.

Proof: To prove this, it suffices to show that the number of strings of length n is greater than
the number of strings of length less than n, for then the Pigeonhole Principle tells us that, if
f mapped every string of length n into a shorter string, it would have to map two strings of
length n to the same shorter string, contradicting our assumption that f is injective. Now, the
number of strings over A of length n is mn, where m = |A|. Let # be the function such that
#(n) is the number of distinct strings over A of length less than n. Then (using our assumption
that m > 1), we have

#(n) =
∑

0≤i<n

mi =
mn − 1

m− 1
< mn

That is, the number of strings of length n exceeds the number of all shorter strings, as required.
End of proof.

More generally, compression schemes come in two main varieties. What we have just described
is called lossless compression. The other kind is lossy compression, so called because the result
g(f(x)) of decompressing f(x) is not guaranteed to be x itself, but only something “resembling”
x. (Hence, something is “lost”.) Given the less strict requirements, it should not be surprising
that lossy compression techniques typically are able to achieve a better rate of compression
than lossless ones.

For some kinds of data (source code, machine code, most text), it is absolutely vital that the
original string be recoverable from its compressed form. In these cases, lossy compression is
intolerable. For data representing images and sounds, however, lossy compression is acceptable
so long as the picture (or audio, or whatever) represented by g(f(x)) is sufficiently close to
that represented by x. (Indeed, even if x and g(f(x)) differ significantly as strings, human
vision and hearing may not be able to perceive any difference between the two when they are
rendered as images or audio.)

Run-length encoding A rudimentary form of data compression is run-length encoding, in
which runs of repeated values are encoded not by literally repeating the value but rather by
identifying the repeated value and indicating how many times it repeats. This approach is
effective only on data in which repeated values are very common, of course.

One possible scheme we could employ for doing (what one might call) byte-based run-length
encoding is to follow the rule that, when there is a run of bytes having the same value, we
encode it using three bytes:

2

(1) 00, which signals that what comes next is the description of a run,3

(2) a one-byte code (using standard binary representation) for the length of the run, and
(3) the byte value that occurs in the run

For example, a run of 4A’s of length six would be encoded by 00 06 4A4. Because the encoding
of a run takes three bytes, there is no benefit in encoding a run of length less than four in the
manner prescribed above. (Indeed, for a run of length two (or one!), extra bytes would be used
in doing so.)

There is one issue that needs to be addressed: How do we encode a single occurrence of byte
value 00? If we simply include it in the compressed version of the file, the decompressor will
interpret it as the first byte in the three-byte code for some run. For example if the original
data contained, say, . . . 37 00 13 D2 AF . . ., the three bytes in the middle would be encoded (in
the compressed version of the data) exactly as is. But then the decompressor would interpret
this three-byte sequence as an encoding of a run of D2’s of length 19 (13 in hexadecimal is
16+3 in decimal, of course).

One way to solve the problem is to stipulate that a single occurrence of 00 should be encoded
by 00 01 00, which describes a run of 00’s of length one! It seems a pity to have to use three
bytes to encode a single byte, however, especially when our goal is to achieve compression! A
slightly better idea is to encode 00 by 00 00, which uses only two bytes rather than three. But
it is not immediately clear why this should work, because, for example, the byte sequence 00 13
would end up being encoded as 00 00 13, which the decompressor would naturally interpret as
a run of 13’s of length zero! Ah, but the point is that we would never encode a run of length
zero in this way! Hence, the decompressor is designed so that, if it encounters 00 immediately
followed by another 00, it translates these two bytes to a single 00.

Note that, following this convention for encoding 00, a run of two (or more) 00’s should be
encoded using the three-byte scheme, as it saves space. (In contrast, a run of any other byte
value must be of length at least four to be encoded using the three-byte scheme, because no
space is saved on shorter runs.)

To illustrate the scheme just described, suppose that the first 17 bytes of data to be compressed
are

47 32 4A 4A 4A 4A 4A 4A C2 C2 C2 63 00 26 00 00 9D

Compressing it, we would get (the 16 bytes)

47 32 00 06 4A C2 C2 C2 63 00 00 26 00 02 00 9D

Very little compression was achieved, because there really wasn’t much repetition to exploit.

Symbolwise coding

3By convention, a byte value is expressed as a two-digit hexadecimal (i.e., base 16) numeral. This is quite
natural, because each hexadecimal digit corresponds to four binary digits (due to the fact that 24 = 16!), and a
byte is eight binary digits. Note that the sixteen digits used in base 16 are 0 through 9 and A through F, the
latter six corresponding to the values 10 through 16.

4The space between adjacent byte values is there simply to make reading easier.

3

The concept of (symbol-wise) coding can be described as follows: You are given a source text x
over the source alphabet A. That is, you are given x ∈ A∗. The goal is to produce an encoding
y over code alphabet B by replacing each symbol in x by a string of symbols from B.

The Morse Code is a static symbolwise coding scheme in which A = {A, . . . , Z, 0, . . . , 9,
?, :, . . .} and B = {−, .}. Each member of A has a corresponding codeword composed of dots
and dashes, as depicted in the figure.

Symbol Codeword Symbol Codeword Symbol Codeword

------ -------- ------ -------- ------ --------

A .- M -- Y -.--

B -... N -. Z --..

C -.-. O --- 1 .----

D -.. P .--. 2 ..---

E . Q --.- 3 ...--

F ..-. R .-. 4-

G --. S ... 5

H T - 6 -....

I .. U ..- 7 --...

J .--- V ...- 8 ---..

K -.- W .-- 9 ----.

L .-.. X -..- 0 -----

Figure 1: Morse Code

The Morse Code illustrates some important concepts relevant to coding and compression.

Notice that the codewords for E and T —the two most frequently occurring letters in English
text— have length one, whereas those for X, Y, and Z —among the most rarely occurring
letters— have length four. Is this just a coincidence? NO! By assigning shorter codewords to
letters that tend to occur more frequently, we tend to shorten the encoding of the source text.
This was one of Morse’s goals.

As a simple example to illustrate this, suppose that the code alphabet is B = {0, 1}, the source
alphabet is A = {a, b, c, d}, and, in the source text, a occurs 27 times, b occurs 12 times, c
occurs 8 times, and d occurs 3 times (for a total of 50 occurrences of symbols). A fixed-length
coding scheme assigns a distinct codeword of length ⌈log|B| |A|⌉ to each symbol in A. In this
example, with |A| = 4 and |B| = 2, that comes out to two, of course. For example, we might
use the following fixed-length code:

a → 00 b → 01 c → 10 d → 11

Because two bits will be used to encode each of the 50 occurrences of symbols, the length of
the encoded text will be 100 bits.

More generally, the length, in bits, of the encoded text will be

∑

v∈A

(lenv · freqv)

4

where lenv is the length of v’s codeword and freqv is the frequency with which v occurs in the
source text. For this example, we get

∑

v∈A

lenv · freqv = (lena · freqa) + (lenb · freqb) + (lenc · freqc) + (lend · freqd) (1)

= (2 · 27) + (2 · 12) + (2 · 8) + (2 · 3) (2)

= 2 · (27 + 12 + 8 + 3) (3)

= 2 · 50 (4)

= 100 (5)

which is consistent with our earlier calculation.

Now consider this alternative (variable-length) coding scheme:

a → 0 b → 10 c → 110 d → 111

Under this scheme, the length of the encoded text will be

∑

v∈A

(lenv · freqv) = (lena · freqa) + (lenb · freqb) + (lenc · freqc) + (lend · freqd) (6)

= (1 · 27) + (2 · 12) + (3 · 8) + (3 · 3) (7)

= 27 + 24 + 24 + 9 (8)

= 84 (9)

Hence, 84 bits suffice to encode the source text under this alternative coding scheme, compared
to 100 bits using the fixed-length code. This yields a compression ratio of 84

100 .

Morse Code is a static code, meaning that the mapping from the source alphabet to the
codewords doesn’t change, regardless of the source text being encoded. In contrast, in the
just-completed example we implicitly suggested the use of semi-static coding, in which the
mapping from the source alphabet to codewords is constructed based upon the number of
occurrences of each symbol in the source text.

In dynamic coding, the mapping itself is subject to being changed as we are translating the
source text. Hence, occurrences of a near the beginning of the source text, where a occurs
frequently, might be encoded by 0 but occurrences of a near the end, where it occurs much
less often, might be encoded by 1011. Typically, a dynamic coding scheme begins with a de-
fault symbol-to-codeword mapping and then adjusts it periodically according to how frequently
each symbol has appeared so far (or how frequently it has appeared “recently”). Hence, one
advantage of dynamic coding over semi-static coding is that the latter must make two passes
over the source text (the first for the purpose of gathering whatever information (e.g., symbol

5

frequencies) is used in constructing the symbol-to-codeword mapping, and the second for ap-
plying that mapping to the source text to produce its coded version) whereas the former need
only make one pass over the source text.

Unique Decipherability

Concatenation, denoted by ·, is the operation by which strings are formed from shorter strings.
Consider, for example, the alphabet {a, b}. Each of a and b can be viewed as a string of length
one. Using concatenation, we can generate the string a · b. Applying it again, we can generate
(a · b) · a. By definition, concatenation is associative, so we can omit the parentheses and write
this as a · b · a. But the ·’s are cumbersome, so (as in algebra, where we often omit the symbol
for multiplication) we prefer to write this as aba. In general, then, unless we wish to emphasize
that a string is being viewed as a product of particular factors (as in aba · ba · aba), we write it
without ·’s.

We are now ready to define the notion of unique decipherability: A set of codewords is
said to be uniquely decipherable (or u.d.) if any string formed by concatenating codewords
together can be factored into codewords in only one way. Or, to put it more precisely, to say
that C is u.d. is to say that if

u1u2 · · ·um = v1v2 · · · vn

where each ui and each vi is a member of C, then necessarily m = n and, for each k satisfying
1 ≤ k ≤ n, uk = vk.

For example, the set of codewords C = {01, 10, 010} is not u.d. because the string 01010 can
be factored as either 01 · 010 or 010 · 10. (We call each of these a C-factorization, meaning
that each factor is a member of C. We call a pair of distinct factorizations of the same string
a disagreeing pair of factorizations.) If, say, we had a coding scheme in which the symbols a,
b, and c from the source alphabet were mapped to the codewords 01, 10, and 010, respectively,
then in decoding 01010 we could (correctly) obtain either ac (corresponding to the factorization
01 · 010) or cb (corresponding to the factorization 010 · 10). In other words, the encoding 01010
is ambiguous! For most applications, this would be unacceptable.

It turns out that Morse Code is not uniquely decipherable. For example, .-- encodes three
different strings: AT, EM, and ETT. If we insert a third symbol, say /, into the code alphabet
and we append it to the end (or the beginning) of each codeword, we obtain a code that is
u.d. Using this modified scheme, AT, EM, and ETT would be encoded as .-/-/, ./--/, and
./-/-/, respectively.

In about 1950, Sardinas and Patterson developed an algorithm that, given a finite set of
codewords, determines whether or not that set is uniquely decipherable. Below we give an
algorithm that augments theirs in that it not only answers the question of unique decipherability
but also —in case the given set C of codewords is not u.d.— yields information sufficient to
construct all possible disagreeing pairs of C-factorizations. Before describing the algorithm, we
need to introduce a few more concepts related to strings.

Let u and x be strings. If there exists a string v such that x = uv, we say that u is a prefix

of x, which is denoted by u � x. If, in addition, u 6= x, we say that u is a proper prefix of x,
which is denoted by u ≺ x. For example, u = abb is a proper prefix of x = abbba, as choosing

6

v = ba gives us x = uv. (Every string is a prefix of itself, but not a proper prefix of itself.) Of
course, there are the analogous concepts suffix and proper suffix.

If u � x, then u\x (sometimes written u−1x) is defined to be that string v such that x = uv.
For example, abb\abbba = ba and abb\abb = λ. (The string of length zero, called the empty

string is denoted by λ.) If u is not a prefix of x, u\x is undefined. The \ operator is called left

quotient.

The augmented Sardinas-Patterson algorithm (see Figure 4) takes as input a set of codewords
C = {w1, w2, · · · , wn} and constructs from it a directed graph SP (C), the Sardinas-Patterson
graph for C. Each vertex in SP (C) is identified with either a member of C or some proper
suffix thereof, and every edge is labeled by a member of C. The program variable V represents
the set of vertices in the graph, E represents the set of edges, and Q ⊆ V is the set of vertices
for which it remains to compute outgoing edges.

In Figure 2 you will find SP (C) for

C = {1, 00, 01, 010, 110, 0010}

Vertices corresponding to members of C are indicated by two concentric circles. Call these
terminal vertices. One can prove that, for any finite set C of codewords, C is uniquely deci-
pherable if and only if there is no non-empty path in SP (C) that begins and ends in terminal
vertices. Indeed, if such paths do exist, each one corresponds to a prime disagreeing pair of
C-factorizations. (By prime we mean that the pair of factorizations is such that there is no
way to “peel” off one or more factors from either end and still end up with a disagreeing pair
of factorizations.) Furthermore, by traversing that path —and making use of the labels on
the terminal vertices and the edges along the way— we can construct the corresponding prime
disagreeing pair of factorizations.

01

00

1

0010

110

1

010

00

0010

01
10 0 010

01

010

Figure 2: Sardinas-Patterson Graph for {1, 00, 01, 010, 110, 0010}

We now provide instructions for doing this: Let (v0, l0, v1), (v1, l1, v2), . . . , (vk−1, lk−1, vk) be a
path in SP (C), where k > 0 and v0, vk ∈ C. Then use the algorithm in Figure 3 to obtain a
prime disagreeing pair (f, g) of C-factorizations.

7

f := v0;
g := l0
i := 1
do while i 6= k
extend shorter of f and g by “·” li
i := i+ 1

od
extend shorter of f and g by “·” vk

Figure 3: Using a Path in SP (C) to Construct a Prime Disagreeing Pair of C-Factorizations

As an example of constructing a prime disagreeing pair of factorizations, consider the Sardinas-
Patterson graph in Figure 2. Take the path

(00, 0010, 10), (10, 1, 0), (0, 0010, 010)

which begins in (terminal) vertex 00 and ends in (terminal) vertex 010. Following the algorithm
in Figure 3, we get the disagreeing pair of factorizations

00 · 1 · 0010

0010 · 010

Or we could take a circuitous route, as by the path

(01, 010, 0), (0, 010, 10), (10, 1, 0), (0, 00, 0), (0, 0010, 010), (010, 01, 0), (0, 0010, 010)

This give rise to the prime pair of disagreeing factorizations

01 · 010 · 0010 · 010

010 · 1 · 00 · 01 · 0010

Deciphering Delay:

For a coding scheme to function properly, at the very least it must be u.d. But, for the sake of
efficiency, we would like to demand even more from it.

Consider the u.d. set of codewords {01, 10, 011} and consider the bit string y = 01(10)n, where
n is some positive integer. The only factorization is

01 · 10 · 10 · 10 · . . . · 10

On the other hand, the string x = y1 = 01(10)n1 = 011(01)n has as its unique factorization

011 · 01 · 01 · . . . · 01

8

// Input is the set of codewords C = {w1, w2, · · · , wn}

isUD := true //final value answers the question: Is C uniquely decipherable?
V,E,Q := ∅, ∅, ∅ // Sets of vertices, edges, and the “queue” all begin empty

do for each i in 1..n
do for each j in 1..n

if wi ≺ wj then
V := V + {wi}
y := wi\wj

addEdge(wi, wj , y)
fi

od
od

do while Q 6= ∅ ∧ isUD // omit 2nd conjunct to build complete graph
v := Q.takeOne() // remove an element from Q and assign it to v
do for each i in 1..n

if v ≺ wi then
addEdge(v, wi, v\wi)

elsif wi ≺ v then
addEdge(v, wi, wi\v)

else
// do nothing, as neither v nor wi is a proper prefix of the other

fi
od

od

function addEdge(x, label, y)
E := E + {(x, label, y)}
if y /∈ V then

V := V + {y}
Q := Q+ {y}

fi
if y ∈ C then

isUD := false
fi

Figure 4: Algorithm for Constructing a Sardinas-Patterson Graph

9

Hence, in decoding y (or x, for that matter), there is no way to tell which of the two codewords
01 or 011 is the first factor until we have reached the end of the string (and thereby determined
whether it ends with 0 or with 1)! (We assume that a string to be decoded is scanned from
left to right.) Given that n can be chosen to be arbitrarily large, it follows that this set of
codewords has unbounded deciphering delay. In a context in which a large quantity of
coded data is being sent to us over a network and we want to decode it “on the fly”, this is
BAD!

A less drastic example of deciphering delay arises from the u.d. set of codewords {0, 01}. In
attempting to decode a message formed from this set of codewords, we must follow the rule
that an occurrence of 0 is a factor if and only if it is not immediately followed by 1. Hence,
this set of codewords has a deciphering delay of one, meaning that, in the worst case, we must
look one symbol beyond the end of a potential factor before we can determine whether or not
it is, indeed, a factor. Obviously, a deciphering delay of one is far preferable to an unbounded
delay, as we saw with the previous example. A deciphering delay of zero (i.e., instantaneous
decipherability) is the best we could possibly hope for, of course.

Huffman Coding/Compression

Consider a full binary tree, meaning one in which every interior (i.e., non-leaf) node has two
children. For each interior node, label the edges going to its children 0 and 1, respectively.
Consider the string “spelled out” by the labels on the edges along the path from the root to a
given node. We refer to this string as the node’s label. Clearly, no two nodes in the tree have
the same label. Moreover, for any nodes p and q, the label of p is a proper prefix of the label of
q if and only if p is a proper ancestor of q. Hence, if we take the labels of all the nodes having
no proper descendants (i.e., the leaves), we end up with a prefix-free set of binary codewords!5

The set of labels of the leaves in the tree pictured nearby is {000, 0010, 0011, 01, 100, 101, 11}.

*

/ \

0 / \ 1

/ \

/ \

* *

0 / \ 1 0 / \ 1

/ \ / \

* * * *

0 / \ 1 0 / \ 1

/ \ / \

* * * *

/ \

0 / \ 1

* *

5A set of strings is said to be prefix-free if none of them is a proper prefix of any of them.

10

It should be fairly obvious that any prefix-free set of codewords is not only u.d. (which we insist
upon absolutely) but also has deciphering delay zero, which is (obviously) optimal. All else
being equal, then, we would prefer to use prefix-free codeword sets to ones that are not prefix-
free. But is all else necessarily equal? Perhaps not. After all, it is conceivable that constructing
a prefix-free codeword set is much more expensive (in terms of computing resources—time
and space) than constructing one that is simply u.d. (but possibly not prefix-free). Also,
it is conceivable that, in some cases (e.g., for a particular set of symbol frequencies), one can
achieve better compression (i.e., a lower compression ratio) by using a non-prefix-free codeword
set than by using any prefix-free codeword set.

Remarkably, it has been proved that, for any u.d. codeword set, one can find a prefix-free
codeword set having exactly the same number of members with exactly the same lengths!
Hence, insisting upon a prefix-free codeword set leads to no sacrifice in terms of compression
ratio. As for the expense of constructing a prefix-free codeword set, Huffman’s algorithm
(which constructs a full binary tree, as illustrated nearby, in order to obtain a prefix-free set
of codewords) shows that, at least when the source alphabet is finite, this can be done quite
efficiently.

11

