Green Chemistry Module for Organic Chemistry

- A Project with Major Support from the Camille and Henry Dreyfus Foundation Special Grant Program in the Chemical Sciences
- Additional support was provided by the ACS, the University of Scranton Faculty Development Fund and the Chemistry Department

Topic: Atom Economy

A Measure of the Efficiency of a Reaction

Efficiency of a Reaction

• Percentage yield

Theoretical yield = (moles of limiting reagent)(stoichiometric ratio; desired product/limiting reagent)(MW of desired product)

Percentage yield= (actual yield/theoretical yield) X 100

Reagent	MW	Weight Used (g)	Theoretical Moles Needed	Moles Used	Density	Bp (°C)
1 C ₄ H ₉ OH	74.12	0.80	0.0108	0.0108	0.810	118
2 NaBr	102.91	1.33	0.0108	0.0129		
3 H ₂ SO ₄	98.08	2.0	0.0108	0.0200	1.84	

Table 2

Desired Product Table

Theoretical Compound MW Yield (Moles)	Theoretical Yield (Grams)	Actual Yield (Grams)	% Yield ^{Density} (°C)
4 C ₄ H ₉ Br 137.03 0.011	1.48 (100%)	1.20	81 1.275 101.6

$CH_3CH_2CH_2CH_2OH$	ł	NaBr +	H_2SO_4	 CH ₃ CH ₂ CH ₂ CH ₂ Br	ŧ	NaHSO4 +	H_2O
1		2	3	4		5	6

Equation 1a $CH_3CH_2CH_2CH_2OH + NaBr + H_2SO_4 \longrightarrow CH_3CH_2CH_2CH_2Br + NaHSO_4 + H_2O$ 2 3 5 6 1 4 0.08g 2.0 1.48 g (theoretical yield) 1.33 0.0108 mole (theoretical yield) 0.0108mole 0.0129 0.0200

Compound 1 is the limiting reagent

Suppose the actual yield is 1.20 g of compound 4.

Percentage yield= (actual yield/theoretical yield) X 100 = (1.20 g/1.48 g) X 100 = 81%

Atom Economy in a Substitution Reaction

Equation 1b

 $H_{3}C-CH_{2}-CH_{2}-CH_{2}-CH_{2}-OH + Na-Br + H_{2}SO_{4} \longrightarrow H_{3}C-CH_{2}-CH_{2}-CH_{2}-Br + NaHSO_{4} + H_{2}O$ $1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6$

Reagents Formula	Reagents FW	Utilized Atoms	Weight of Utilized Atoms	Onutilized Atoms	Weight of Unutilized Atoms
1 C ₄ H ₉ OH	74	4C,9H	57	HO	17
2 NaBr	103	Br	80	Na	23
3 H ₂ SO ₄	98		0	2H,4O,S	98
Total 4C,12H,5O,BrNaS	275	4C,9H,Br	137	3H,5O,Na,S	138

% Atom Economy = (FW of atoms utilized/FW of all reactants) X 100 = (137/275) X 100 = 50%

$$H_{0}C - CH_{2} - CH_{2} - CH_{2} - OH + Na - Br + H_{2}SO_{4} - + H_{3}C - CH_{2} - CH_{2}$$

Table 4Experimental Atom Economy of Equation 1: Based on Actual
Quantities of Reagents Used

Reagents R	cougoin	tilized	Veight of Utilized ^U oms (FWX moles)	Unutilized Atoms A	Weight of Unutilized Atoms (FWX moles)
1 C4H9OH	74.0 X .0108 = .80	4C,9H	57 X .0108=.62	HO	17 X .0108=.18
2 NaBr	103 X .0129= 1.33	Br	79.9X .0129=1.03 79.9X .0108=0.86 excess 0.17	Na	23 X .0129=.30 excess 0.17 subtotal 0.47
3 H ₂ SO ₄	98 X .0200= 2.0		0.00	2H,4O,S	98.1 X .0200=1.96
Total 4C,12H,5O,BrNaS	4.13	4C,9H,Br	1.48	3H,5O,Na,S	2.61

% Experimental Atom Economy = (mass of reactants utilized in the desired product/total mass of all reactants) X 100 = (theoretical yield/total mass of all reactants) X 100 = (1.48 g/4.13 g) X 100 = 36%

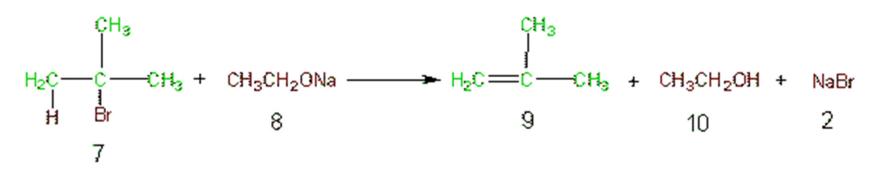
% Yield X Experimental Atom Economy

- % Yield X Experimental Atom Economy = (actual yield/theoretical yield) X (mass of reactants utilized in the desired product/total mass of all reactants) X 100
- $\% PE \cdot EAE =$ (actual yield/theoretical yield) X (theoretical yield/total mass of all reactants) X 100 = (actual yield/total mass of all the reactants) X100
 - = (1.20 g/4.13 g) X 100 = 29%

THE TWELVE PRINCIPLES OF GREEN CHEMISTRY

- **1.** It is better to prevent waste than to treat or clean up waste after it is formed.
- 2. Synthetic methods should be designed to maximize the incorporation of all materials used in the process into the final product.
- 3. Wherever practicable, synthetic methodologies should be designed to use and generate substances that possess little or no toxicity to human health and the environment.
- 4. Chemical products should be designed to preserve efficacy of function while reducing toxicity.
- 5. The use of auxiliary substances (e.g. solvents, separation agents, etc.) should be made unnecessary whenever possible and, innocuous when used.

THE TWELVE PRINCIPLES OF GREEN CHEMISTRY


- 6. Energy requirements should recognized for their environmental and economic impacts and should be minimized. Synthetic methods should be conducted at ambient temperature and pressure.
- 7. A raw material feedstock should be renewable rather than depleting whenever technically and economically practical.
- 8. Unnecessary derivatization (blocking group, protection/deprotection, temporary modification of physical/chemical processes) should be avoided whenever possible.
- **9.** Catalytic reagents (as selective as possible) are superior to stoichiometric reagents.

THE TWELVE PRINCIPLES OF GREEN CHEMISTRY

- 10. Chemical products should be designed so that at the end of their function they do not persist in the environment and break down into innocuous degradation products.
- 11. Analytical methodologies need to be further developed to allow for real-time in-process monitoring and control prior to the formation of hazardous substances.
- 12. Substances and the form of a substance used in a chemical process should chosen so as to minimize the potential for chemical accidents, including releases, explosions, and fires.

Atom Economy in Elimination Reactions

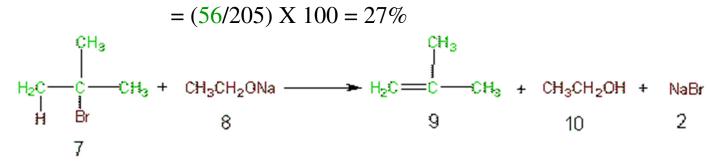
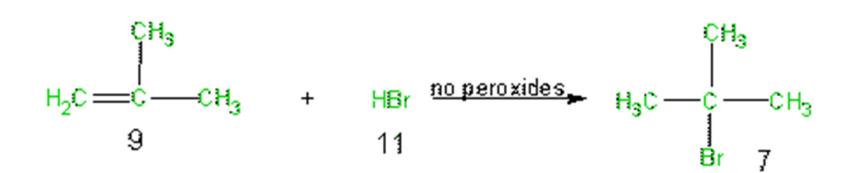

• Equation 2

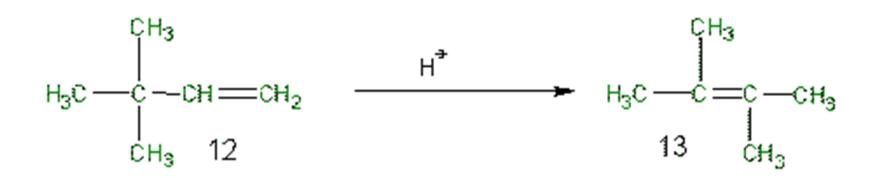
Table 5 Atom Economy Equation 2

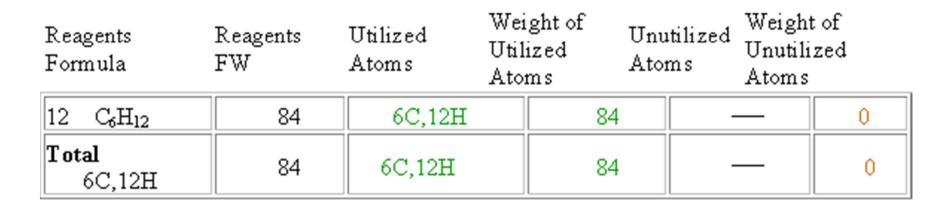

Reagents Formula	Rea FW	gents	Utiliz Atom	ea . s	Weight of Utilized Atoms	Unutilized Atoms	Weight o Unutilize Atoms	of ed
7 C₄H9Br		137		4C,8H	56	HBr		81
8 C ₂ H ₅ ONa		68			0	2C,5H,O	,Na	68
Total 6C,14H,O,Br,Na	à	205		4C,8H	56	2C,6H,O,I	3r,Na	149

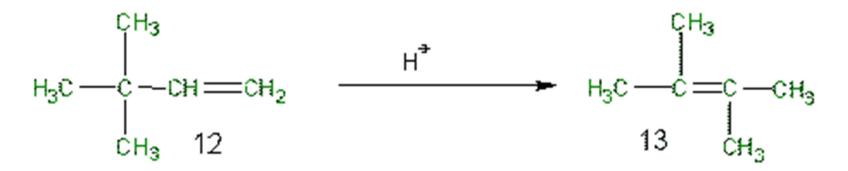
% Atom Economy = (FW of atoms utilized/FW of all reactants) X 100

Atom Economy in Addition Reactions

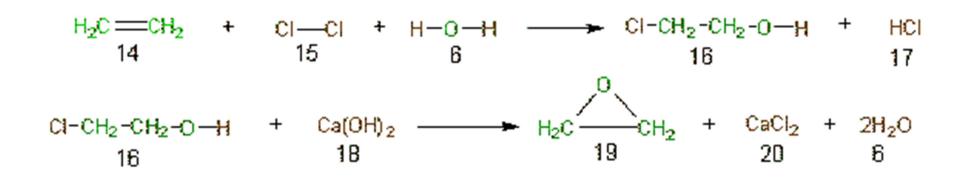
• Equation 3


Reagents Formula	Reagents FW	Utilized Atoms	Weight of Utilized Atoms	Unutilized Atoms	Weight of Unutilized Atoms
9 C ₄ H ₈	56	4C,8H	56		0
11 HBr	81	HBr	81		0
Total 4C,9H,Br	137	4C,9H,Br	137		0


% Atom Economy = (FW of atoms utilized/FW of all reactants) X 100 = (137/137) X 100 = 100%


Atom Economy in Rearrangement Reactions

• Equation 4



% Atom Economy = (FW of atoms utilized/FW of all reactants) X 100 = (84/84) X 100 = 100%

Scheme 1 Atom Economy in The Clorohydrin Route to Ethylene Oxide

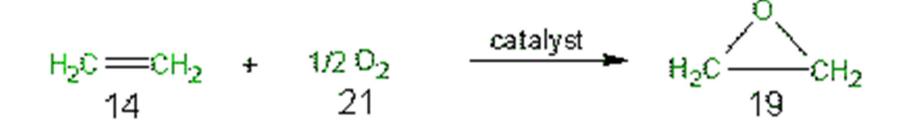
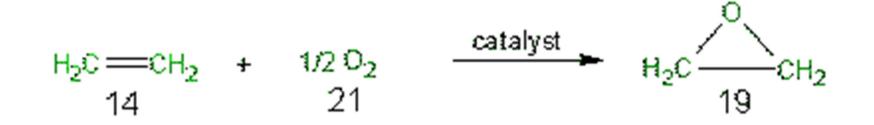


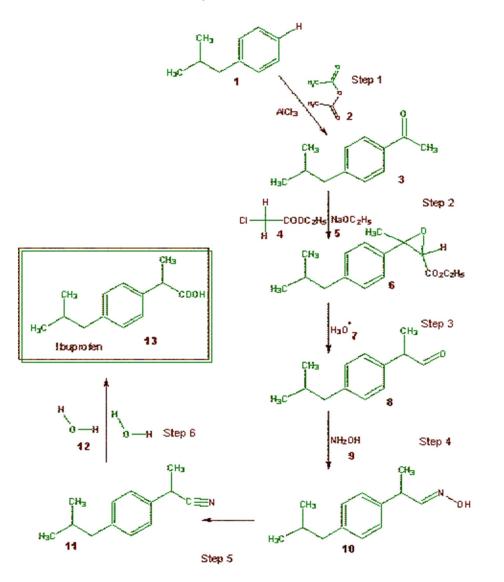
Table 8Atom Economy of Scheme 1, The Clorohydrin Route to EthyleneOxide

Reagents Formula	Reagents FW	Atoms	Weight of Utilized Atoms	Atoms	Weight of Unutilized Atoms
14 C ₂ H ₄	28	2C,4H	28		0
15 Cl ₂	71		0	2C1	71
6 H ₂ O	18	0	16	2H	2
18 Ca(OH) ₂	72		0	Ca,4H,2O	72
Total 2C,8H,3O,Ca,2Cl	189	2C,4H,O	44	6H,2O,Ca,2Cl	145

% Atom Economy = (FW of atoms utilized/FW of all reactants) X 100 = (44/189) X 100 = 23%


Scheme 2 Atom Economy in The Catalytic Route to Ethylene Oxide

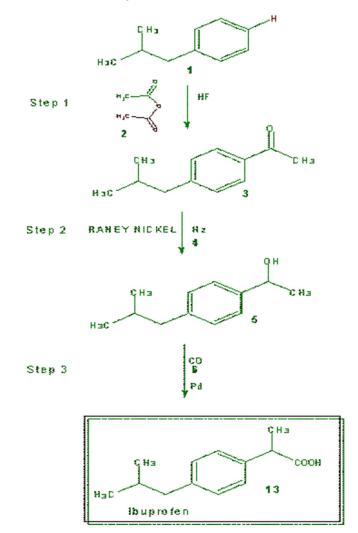
Reagents Formula	Reagents FW	Atoms	Weight of Utilized Atoms	Unutilized Atoms	Weight of Unutilized Atoms
14 C ₂ H ₄	28	2C,4H	28		0
21 1/2 O ₂	16	0	16		0
Total 2C,4H,1O1	44	2C,4H,O	44		0


Table 9 Atom Economy of Scheme 2, The Catalytic Route to Ethylene Oxide

% Atom Economy = (FW of atoms utilized/FW of all reactants) X 100 = (44/44) X 100 = 100%

The Boots Synthesis of Ibuprofen

Scheme 3, Atom Economy


Table 10Atom Economy of Scheme 3, the Boots Company Synthesis ofIbuprofen

Reagents Formula	Reagents FW	Utilized Atoms	Weight of Utilized Atoms	Unutilized Atoms	Weight of Unutilized Atoms
1 C ₁₀ H ₁₄	134	10C,13H	133	Н	1
2 C ₄ H ₆ O ₃	102	2C,3H	27	2C,3H,3O	75
4 C₄H7C1O2	122.5	C,H	13	3C,6H,C1,2O	109.5
5 C2H5ONa	68		0	2C,5H,O,Na	68
7 н₃О	19		0	3H,O	19
9 NH3O	33		0	3H,N,O	33
12 H4O2	36	Н,2О	33	3H	3
Total 20C,42H,N,10O, Cl,Na	514.5	Ibuprofen 13C,18H,2O	Ibuprofen 206	Waste Products 7C,24H,N,8O, Cl,Na	Waste Products 308.5

% Atom Economy = (FW of atoms utilized/FW of all reactants) X 100 = (206/514.5) X 100 = 40%

The BHC Synthesis of Ibuprofen

Scheme 4, Atom Economy

Table 11Atom Economy of Scheme 4, the BHC Company Synthesis ofIbuprofen

Reagents Formula	Reagents FW	Utilized Atoms	Weight of Utilized Atoms	Unutilized Atoms	Weight of Unutilized Atoms	
1 C ₁₀ H ₁₄	134	10C,13H	133	H	1	
2 C₄H ₆ O ₃	102	2C,3H,O	43	2C,3H,2O	59	
4 H ₂	2	2H	2		0	
6 CO	28	CO	28		0	
Total	266	Ibuprofen	206	Waste Products	60	
15C,22H,4O		13C,18H,2O		2C,3H,2O		

% Atom Economy = (FW of atoms utilized/FW of all reactants) X 100 = (206/266) X 100 = 77%