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ABSTRACT: Using citrate-capped gold nanoparticles (Aul\!al)Ds)
for laser desorption ionization mass spectrometry (LDI-MS) |S§QQ/

approach that has demonstrated broad applicability to ionization of

di erent classes of molecules. Here, we show a simple AuNI?w%
approach for the ionization of neurotransmitters. &bcithe

detection of acetylcholine, dopamine, epinephrine, glutamine, 4-
aminobutyric acid, norepinephrine, octopamine, and serotoninayas ™\ ©
achieved at physiologically relevant concentrations in serum an

homogenized tissue. Additionally, pneumatic spraying of AuNPS ~
onto tissue sections facilitated mass spectrometry imaging \ -
of rabbit brain tissue sections, zedtraembryos, and neuro-

blastoma cells for several neurotransmitters simultaneously using (m/z)

this quick and simple sample preparation. AUNP LDI-MS achieved

mapping of neurotransmitters e structures of zebsh embryos and neuroblastoma cells at a lateral spatial resolution of 5

The use of AuNPs to ionize small aminergic neurotransmitters in situ provides a fast, high-spatial resolution method fo

simultaneous detection of a class of molecules that typically evade comprehensive detection with traditional matrixes.
KEYWORDS:mass spectrometry imaging, neurotransmitters, gold nanopasti¢lasumsiiestoma

INTRODUCTION which thus far have broad applicability across biomolecule

Advancements in mass spectrometry (MS) over the past 1§SSes. including carbohydrates, amino acids, peptides, neutral
years can be traced through publication frandsange from ~ Stéroids, and othe’$,” and have particularly unique
fundamental small molecule ion chemistry to new discoveri@gization capabilities for small molecules.

in ionization that allow for the comprehensive analysis of M@ss spectrometry imaging (MSI) is a powerful molecular
biomolecules, including proteorfiés lipidomics, 7 and imaging tool that provides highly multiplexed molecular
perhaps most recenﬂy’ metabo|o§n?‘(}yntargeted ana|ysis’ information using a label free method. While the use of
aided concomitantly by the incorporation of data science tdALDI-MSI is gaining traction in basic science and
MS, has emerged as one of the most powerful tools in tfgomedical applicatiolfs it is still faced with sigmiant
postgenomics efa:®> The quality and quantity of the obtained challenges in (i) sample preparation and (i) thectwe

MS raw data (i.e., the number and intensity of peakkteral spatial resolution that can be achieved. More
generated) strongly depends on the ionization process itsalfiecically, maintaining optimum conditions for homogeneous
Traditional organic matrixes (e.gcyano-4-hydroxycinnamic matrix crystal formation can be a challenge in MALDI imaging.
acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and 5-While the introduction of pneumatic sprayers and
dimethoxy-4-hydroxycinnamic acid, also known as sinapic @ublimation procedufés™ have dramatically reduced this
sinapinic acid (SA)) have found widespread use in matrixmitation, there is still a fundamental limit on crystal size and

assisted laser desorption/ionization (MALDI)-MS of variougherefore pixel sizé Additionally, analyte delocalization is a
biomolecule¥! including lipids, proteins, and carbohydrates,

but have struggled to enable the ionization of sma
molecule$> Small molecule detection has improved with th
introduction oN-(1-naphthyl) ethylenediamine dihydrochlor-
ide (NEDC) and 1,5-diaminonaphthalene (DAN). Ultimately,Received: April 30, 2020

with the large number of choices available, detailed knowledgevised: August 25, 2020
of what matrix will ionize which biomolecular class is needetlccepted: August 25, 2020
In contrast, we propose the use of gold nanopatrticles (AuNP$)yblished: August 25, 2020

gpecial IssueFocus: 2019 Asilomar Meeting - MS
e1maging
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continuing challenge to mitigdté} the matrix needs to  with nominal sizes of 2 and 5 nm were purchased from Ted
extract analyte molecules as well as maintain sample integfiglla, Inc. (Redding, CA). Steritered human serum was
even for analytes with high whivity. Instrument-to-instru- purchased from Sigma-Aldrich (St. Louis, MO). Young frozen
ment and lab-to-lab reproducibility is still an issue ifi“MSlI, rabbit brains stripped of meninges were purchased from Pel-
specically with regards to sample preparation. Lateral spatiateeze (Rogers, AK). Thewere no additional safety
resolution in commercial instruments ranges from 5 to 26onsiderations outside of normal chemical hygiene procedures.
m>>**with other reports of home-built instruments going as Cray sh Brain Preparation. Previously dissected and
low as 600 nrir. 3’ frozen crayh brains Rrocambarus clarkifom Carolina
Neurotransmitters (NTs) have beendlilt to detectin situ ~ Biological Supply (Burlington, NC) were thawed to room
using traditional MALDI techniques due to their lowtemperature and were mixed with 26@f pH 7.0 buered
abundance (e.g., nanomolar to picomolar concentration@s mM ammonium bicarbonate (ABC) and manually
and low molecular mass, resulting in a high chemical noise @wogenized using a mortar and pestle. Next, another 250
nY z overlap with most traditional matrixes. The only previousL of ABC was added and the sample split and was transferred
MSI experiments that have succeeded with highly multiplexesitwo test tubes that were spun at 8000 rpm for 8 min in a
detection of NTs in tissue have used chemical derivatizati@00 MWCO spin Iter (EMD Millipore, Burlington, MA).
methods®*° The additional steps and time required for The ow through was retained and spun again at 8000 rpm for
derivatization a&ct the ability to achieve true high throughput 10 min and then 14 000 rpm for 5 min. The remaining solution
(HTP& and may increase the chances of analyte delocaliz@as distributed into 10Q tubes, and AuNPs was added; the
tion*>** Previous reports of NT MSI also requiregréint  empirically determined optimum AuNP-to-analyte ratio was
(or multiple) matrix preparations in order teatively detect for 5 L of 2 nm AuNPs to be added to 1@0of sample.
NTs that are not primary amines (e.g., ACh aB#C)>® Zebra sh Husbandry. Adult zebrash Danio rerijowere
Inorganic materials, i.e., nanoparticles (NPs), have beguarchased from Carolina Biological Supply (Burlington, NC)
widely utilized in MS and have uniquects on ionization and bred, and embryos were collected. Within 4 h of
that are not observed with traditional organic matrixes yet hagestfertilization, embryos were transferred to Petri dishes
not been met with mainstream usage. Materials have includsshtaining embryo medium (E3) and kept 283 buer
gold;%%*2 ** silver,%*" silicon;® and carbofi? ** Speci- was changed daily until 5 days of postfertilization when
cally, AuNPs have been shown to ionize peptidesije embryos were sa@@d using a 600 mg/L solution of tricaine
acids;>*? carbohydrate$;*** steroids;*** and other lip-  methanesulfonate. All animal handling procedures were
ids?#*%5%5% Multiple applications of AuNPs with various approved by IACU@9-19 at the University of Scranton.
analyte interactions have been publiSH2emonstrations of Neuroblastoma Preparation. Neuroblastoma cells (SK-
AuNP-enhanced imaging of ti plant materialéhave ~ N-SH, HTB-11) were purchased from ATCC (Manassas, VA)
resulted in lateral spatial resolutions of #0Sputtering of  and kept frozen until use. Cells were cultured in Dtsbelco
NP nanolayers onto tissue or plant sections have enablg@di ed eagle medium in a glass Petri dish and across cleaned
imaging of biomolecules; however, sputtering NPs hagdium tin oxide (ITO) slides (Delta Technologies, Loveland,
challenges with consistent NP size and the availability of t@®) coated with poly-lysine. Neuroblastoma cells were
necessary equipméht.* The ionization mechanism of NPs placed in a desiccator for 5 min before spraying with AuNPs
is not fully understodd; "*>>* though prior studies suggest (spraying details below).
that energy transfer from AuNPs to the analyte may occur Sample Preparation. Aqueous NT solutions were
through a thermally driven mechanism; this lack of consensp®pared at 1 mg/100L. Using 2 and 5 nm AuNPs
may contribute to the sporadic usage of these types pfdividually, samples hadrel ratio of 1 AuNP/T0analyte
materials. molecules; samples were plated using the dried droplet
Here, we describe the ionization of individual NTs and ofnethod. Traditional matrixes of CHCA, DHB, and SA were
endogenous NTs from biological samples using citrate-cappfitked with analyte molecules at a ratio®aha@rix/1 analyte
AuNPs. We introduce MSI using pneumatically sprayeghd spotted on target plates using the dried droplet method.
AuNPs on tissue sections, which overcomes several frequepflynan serum samples were prepared at a concentration of 1
cited issues in MSI and presents a reduced time and CQAb/10 L, and an appropriate ratio of AUNPs was placed into
alternative to current methods for small molecule analysislution. NT spiked organic matrix samples were prepared by
Specically, we address delocalization, reproducibility (shot-tgaking the same starting serum sample, through addiof 5

shot and repeated runs), long-term stability of readily prepargdpreviously prepared NT solution (including matrix) and
tissue sample, and ionizatioriency of NTs and other small  plating using the dried droplet method.

molecule§®° LDI and MALDI-MS Analysis.All target-plate-based
experiments were performed on a Kratos Axima MALDI-
METHODS TOF MS (Shimadzu Scierttilnstruments, Columbia, MD).

Materials. The following were purchased from Millipore- Conditions were optimized in positive iorec&ron mode,
Sigma (St. Louis, MO): -cyano-4-hydroxycinnamic acid using pulsed extraction with a Ibser at 337 nm. Similar
(CHCA), acetonitrile, acetyloline chloride, ammonium instrument conditions were used for traditional matrix and
bicarbonate, 2,5-dihydroxybenzoic acid (DHB), dopaminAuNP experiments. In general, an increase in laser power is
hydrochloride, epinephrine hydrochlorideaminobutyric  needed for the AuNP samples compared to traditional
acid, glutamic acid monosodium salt, norepinephrine bitamatrixes, with little dérence in power for 2 and 5 nm
trate, octopamine hydrochloride, pelysine, serotonin AuNPs. Target-plate-based experiments were repeated for
hydrochloride, sinapinic acid (SA), tricaine methanesulfonag, cacy on a Bruker Rapk MALDI TOF/TOF mass
and HPLC grade water and methanol. All reagents were AGBectrometer (Bruker Daltonics Instruments, Billerica, MA)
grade or higher, unless noted. Gold nanoparticles (AuNPB) re ectron positive ion mode with a Nd:YAG laser at 355
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nm. Since the data obtained were similar to previous targatirpose organic matrixes (i.e., DHB or CHCA;igeee SB
plate experiments on the Shimadzu Axima, no target plate datisich were unable to provide conclusive results for many of
from this instrument are shown here. Note, this isr¢he the NTs. Speatally, the use of DHB resulted in overlapping
demonstration across instruments (i.e., lasers) for this meth@shalyte peaks and matrix background chemical noise (e.g., 5-
MS/MS experiments were done on a Bruker & MALDI HT, DA, EP, GLU, and OT), i.e., analyte and matrix peaks
TOF/TOF instrument in prding mode using an M%t laser could not be distinguished because of multiple isobaric species.
with 114 m resultanteld with 4000 laser shots and argon gas To show the ecacy of AuNPs to ionize NTs from a
collision induced dissociation (CID). All measurements wereomplex mixture, we analyzed homogenizedsttragains.
completed with & 1 Da isolation window. Measurements This is a particularly deult sample to analyze using MS due
were performed on tissue from the head region of theshebra to the small chemical footprint of the target molecules. AuNPs
embryo. MS/MS spectra of pure NTs were measured on ianized many of the NTs typically found in a stayprain.
stainless steel target plate using the same method. Specically, 2 nm AuNPs ionized DA/OT, EP, NE, 5-HT,
Mass Spectrometry Imaging. Zebrash embryos were ACh, GLU, and GABA/choline (sé&ure a) and 5 nm
placed in a 10 mm 10 mmx 5 mm biopsy cryomold (Ted
Pella) and embedded in Thermo Scienhandon M1
embedding media (Thermo Fisher Scigntaltham, MA). @

+
197.0 [Au]*

T
After freezing, the block was sectioned amlthickness at § 5 Y LT -
16 °C and thaw-mounted onto cleaned ITO slides. Fresh : Fol 2 T b :
frozen rabbit brain was sectioned &0 °C without 3 g B 9 W o= I
embedding in media at 1én thickness and thaw-mounted ° S = o2 2 2 -
onto cleaned ITO slides. All cryo-sectioning was done on ¢ ‘T' § g E‘ & = ;7 g
AL aalp

Leica CM1860 cryostat (Balo Grove, IL). A traditional
organic matrix preparation was performed using 10 mg/mLm TYSNUEL TSPV LPY FUIVPTE I RPIVFRVTPRRWES YHEVR RRIRVROTIL U
DHB in 50% MeOH/50% water and sprayed using an HTX m
M5 sprayer (HTX Technologies LLC, Chapel Hill, NC) witha ®
nozzle temperature of 85. Eight passes were sprayed at a
ow rate of 0.075 mL/min with no drying time. Using the
HTX M5 sprayer, 2 nm AuNPs were sprayed at either 30 or 4¢
°C. One pass was sprayed aivarate of 0.010 mL/min with
2 s drying time. All imaging experiments were performed or
Bruker Rapex MALDI-TOF/TOF mass spectrometer. 0\
Spectra were obtained in positive ion mode with 200 Iase'w
shots per pixel.
Data Processing.All data was converted to imzML using ©
exlmaging version 5.0 (Bruker Daltonics). The im4&4L
were then converted in msiQUéafur analysis and processing.
RStudio was also used for data analysis. The packac
Cardindl® under the Bioconductor Normalization was
performed using a total-ion-count (TIC) method. Regions of
interest were selected by hand.

| —
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RESULTS/DISCUSSION miz

NTs analyzed here include acetylcholine (ACh), dopaminigure 1.Positive ion LDI mass spectra of homogenizedsieray
(DA), epinephrine (EP), 4-amino butyric acid (GABA), bra_in usir!g (a) 2 nm AuNPs with an inten_sity of 68_0 mV, (b) SA with
glutamine (GLU), norepinephrine (NE), octopamine (OT), &0 intensity of 1382 mV, and (c) DHB Wlth intensity of 144 mV. All
and serotonin (5-HT). Supporting Informatioable S1 detected NTs are labeled as well as tfidofu These data were
details the species observed for individual NTs using 2 anoc‘gIECtEd on a Shimadzu Axima.

nm AuNPs, along withigures S1S7showing mass spectra

for all NTs listed. Interestingly, ACh on the target plate did noAuNPs ionized ACh, DA/OT, EP, GABA/choline, and GLU,
require AuNPs to ionize (attributed to the quaternary aminé-HT. Compared to analysis with DHBg(re b), more

with permanent charge, ségure S)jlbut did on tissue. While  NTs were observed with AUNPs and there was no overlap of
these control experiments were done to determine if any NTsatrix with potential NT signals (labeled)asdditionally,
desorb as preformed ionsedénces between the target plate the optimized instrument conditions yielded a higher ion
and on tissue were expected. We infer thatedices in  detection of 680 mV for AUNP compared to 144 mV with
analyte concentration and the overall complexity of thBHB. Analysis with SAFigure &) resulted in very high
background matrix @cted ionization eciency. Additionally, baseline noise that arises from needing a higher laser power to
salt adducts were present, with fewer being observed for 5 vlvserve any signal at all, and therefore, overall ion detection
as compared to 2 nm AuNPs; salt adducts are expected duemas 1382 mV but with only two NTs observed. Chemical
the high concentration of Nand K from the AuNP solution.  background noise is still present with AUNPs but is improved
All pure compounds tested using AuNPs resulted in &om organic acid matrixes. Traditional methods of analysis for
reduction in background chemical noise as compared dTs in craysh (and other vertebrate systems) typically
organic matrixes, which aided the detection of the NTsnclude high-performance liquid chromatography-electrochem-
Detection of NTs with AUNPs was compared to that with allical detection (HPLC-ECD), which can be time-consuming
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and requires sigmant method developmé&htThis novel were also observed in LDI-MBigure & shows the optical
application of AUNPs could potentially transform the ability téimage of the rabbit brain section for referencé&igqume: B
analyze NTs in tissue homogenates of a variety of organisms
commonly used in neuroscience research.
To further assess the utility of AUNPs for NT detection in
biological samples, human serum was analyzed. Both 2 and 5
nm AuNPs ionized NTs at circulating physiological concen-
trations, for which many of the NT concentrations are in the
100s of pg/m§’°® Figure 2shows 2 nm AuNPs ionizing

AN

104.1[GABA + H/Choline]*
+

146.2[ACh]*
147.0[GLU + H]
170.0[NE + H]*
177.0[5-HT + H]*
184.1[EP + H*

Figure 3.MSI of coronal rabbit brain tissue section an20ateral
spatial resolution: (a) optical image with annotations for white matter
i | | L (WM), gray matter (GM), and ventricles (V), (b) DA/OT image at
T m/z 154.02, (c) NE image a¥ z 169.97, and (d) GABA/choline
image atn/z 104.04.
Figure 2.Positive ion LDI mass spectrum of human serum using 2

nm AUNPs. All detected NTs are labeled as well asti@nAu d shows the distribution of DA/OT, NE, and GABA/choline
at 20 m lateral spatial resolution. Importantly, the images

GABA/choline, GLU, DA/OT, 5-HT, NE, and EP. This is the show a dierence between white and gray matter regions of the

rst known example of AuNPs ionizing NTs at abrain, with the visualization of the folds of the gray matter and
physiologically relevant concentration (e.g., the typic#he interior cavity of white matter that typically lacks NT
circulating concentration of DA in serum of 200 pg/signal. White matter contains axons, which are typically
mL).°"%® As an additional comparison, SA, CHCA, andsurrounded by the myelin sheath; gray matter contains most
DHB were run with spiked NTs in order to assess ionizatioof the neuronal cell bodies, leading to an expectedrtie in
suppression. All organic matrix spectra haccsignchemical ~ NT abundance. GABA!* DA,”® and NE® have previously
noise in the low mass region (Bapire Sp been shown to have diences in concentration in white vs

Although DHB may have produced signals for DA/OT andgray matter using magnetic resonance imaging techniques,
5-HT, it was not possible to distinguish these from matrithough this has not previously been visualized using MSI. The
peaks. Also, to generate siganit signal intensities for CHCA, ability to map NT location is useful for neurological research;
a high laser power was required, resulting in more spectfat example, DA detection in white matter has been used for
noise and poor spectral resolution. DHB also failed to ionizeacking the progression of disease in HuntigGtamd
EP and GLU. CHCA did not ionize DA, EP, OT, and 5-HT. In Parkinsois diseasé€$/® and gray matter density informs on
contrast to organic matrixes, both 2 and 5 nm AuNPs werdromyalgia’ Finally, tissue sections, which contain fewer salt
able to ionize all NTs, highlighting the importance of matriadducts than target plate experiments, resulted in images
choice in LDI-MS when working in the mass range télow  showing much lower intensity in"Ma&ad K adducts of NTs
300. Limits of detection (LODs) were determined on thethan those observed in tdrgaate experiments (see
target plate, and concentrations as low as femtomol&upporting Information Figure ¥IThis could be attributed
microliter per spot were ionized using 2 and 5 nm AuNP® a change in how ionization occurs, with the soft desorption
for all analytes. All resulting spectra were comparable withiroprotonated species being more favorable than that of the salt
orders of magnitude of analyte concentration and within &dduct; more experimentation to evaluate thesemnites is
orders of magnitude of AuNP/analyte, as previouslyeeded and ongoing.
discusseéft'’ (see theMethods section for details). Few The mass spectrum for rabbit brain slices, which was
previous LOD determinations of NTs have been done usimyprmalized to total ion count (TIC), is showifrigure 4wvith
LDI-MS. The closest comparisons for LDI-MS were ara comparison to tissue sprayed with CHCRiglmre 4 near
analysis of DA in the nanogram/milliliter r&hged another  m/z 104 and 184, there is baseline distortion and there is an
study detecting NE and EP in the nanomole/gram range frolmrea where no additional peaks are observed, which could
tissu€® Additionally, electrospray ionization of select NTs hasesult from the high intensity of these two peaks. CHCA is
been reported in the nanomolar range (of 5-HT, DA, and theknown to extract lipids, andz 184 is typically idengd as
metabolites) and in the nanogram range (of 5-HT, DA, and the phosphatidylcholine headgroup or cytosolic phosphocho-
their metabolites): line, which also results im/z 104 as choline as a

Next, we tested the applicability of AuUNPs for LDI-MSI andlecomposition product or free choline present in the
examined coronal rabbit brain tissue sections 110 cytosoij.2181 For the AuNP samples, MS/MS of pure GABA
thickness) as a proof-of-concept experiment. Given thand choline do not show any fragmentatiereices ant/
similarity in performance of 5 and 2 nm AuNPs on the target 184 is conrmed as NE (seBupporting Informtion Figure
plate, only 2 nm AuNPs were used from this point forwards1). Even with minimal spraying of organic matrix, the tissue
The same NTs that were detected in target plate experimengssaturated with these two ions, resulting in few mlgati

__169.3[GLU + Na]*

—
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Figure 4.Positive ion LDI mass spectra of frDsliced rabbit brain

tissue section, normalized to TIC: (a) CHCA spectrum with an
intensity of 825 au and (b) 2 nm AuNP spectrum with an intensity of
6.55 au. All detected NTs are labeled. These data were collected on a
Bruker Rapex.

Figure 5MSI of axial zebrah embryo tissue section at &0lateral
spatial resolution: (a and d) GABA/choline imageszt04.12, (b
peaks in the low-mass range. Overall, AUNPs are advantageodse) 5-HT images at' z 177.09, and (c and f) EP imagesvat
for sample preparation and preservation of signal intensitié§1.05. The top row of images was acquired directly after spraying of
An additional improvement of using AuNPs for MSI is thafpfuNPs onto tissug. The bott_om row qf images was a_second imaging
there is minimal to no delocalization of the analyte. Supportir’ﬂjzrl of the same tissue section acquired after overnight storage in a
Information Figure S12shows a typical CHCA spraying 20 C freezer and without spraying new AUNPs.
protocol on a rabbit brain tissue section and the resulting
delocalization, wherg z signals extend beyond the tissue
margins (bold white line). runs and could sigeiantly impact methods of data collection
Expanding the utility of MSI to zelstaembryos, which are and the number of organisms required in research. Additional
1 2 mm in size, presents several new challenges, includingaging runs (up to 8) were performed on multiple tissue
tissue preparation (e.g., mounting and cryo-sectioning) andaifeas, and there was no discernibkratice in the spatial
MSI can be achieved at a high enough spatial resolution déstribution of NTs and intensity after repeated laser shots on
adequately map the distribution of NTs. This organism is dhe same area. Supporting Informatignre S13hows the
interest because it is a widely accepted model for G&netic average mass spectrum from tsieand second imaging runs.
and neuroscierdté” studies owing to its similarities in Organic matrixes typically require exacting conditions in order
neuroanatomy and development to higher level vertde e ectively image small molecules and do not allow for
brate$>° as well as conservation of metabolic patfilvays.repeat runs without washing and matrix reappli¢atioget
Finally, the rapid breeding cycle, basic husbandry, and eaklg have demonstrated that there is extreribility in
morphology make zebsh an attractive moddtigure 5 storage of tissue when using AuNPs for MSI. Faneation
shows the MSI data from 18 thick tissue sections of 5 day of the detected NT species in zetinawe used anatomical
postfertilization (dpf) zebrsh embryos imaged at 2t clues from a tissue aflascomputational data analysis
lateral resolution from an axial cryo-sectioning orientatiomethods (e.g., segmentation analysis), and MS/MS (see
with spraying of only one pass of AuNPs for sampl&upporting Information Figures S11 and S2%. We are
preparation. All the preusly characterized NTs were conducting further experiments to determine the full range of
observed by MSI, with images of 5-HT, GABA/choline, andample exibility; for example, thus far 10 precursor ions have
epinephrine shown ifgure §with embryo orientation of eye been veried using MS/MS on one zelsh tissue section
at the top and tail at the bottom). The neural tube (i.e., spinakith no loss of signal, suggesting that more are possible. To the
cord) contains neural crest cells that migrate concomitanthest of our knowledge, these are tsieMSI data of zebrsh
with somites, followed by subsequent somitxeditiation embryos that simultaneously map multiple NTs, which
into the basal lamiffd;this allows for observation of the presents exciting new opportunities for developmental biology
outline of the rapidly expanding somatic muscle that surroundssearch. The corresponding skyline mass spectrum from the
the spinal cord and notochofdgure 8 f (bottom row) MSI run is shown irFigure S22Note that the skyline
shows a subsequent imaging run performed on the tissue affpectrum is shown so that low-intensity ions will have the same
storing the slide overnight a20 °C. There is no apparent intensity as they appear at the individual pixel level even
di erence in the NT spatial images after freezing the tissudpugh they may only be present in a small fraction of the pixel
and no additional application of AuUNPs was required. Thepectra. The skyline spectrum was used so that a maximum
ability to acquire additional data on tissue allows for repeatedmber of signals could be interrogated to detect other small
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molecules of interest, possibly beyond neurotransmitters.importance of NTs, histidine is a molecule of interest because
fully detailed examination of these data is ongoing. it is a precursor to histamine that has important neuro-

In addition to these proof-of-concept experiments on varioysotective eects)” and it has spedally been shown to
biological samples and tissues, we have pushed the limitafmote astrocyte migration after cerebral isctienaistly,
lateral spatial resolution on tissue using AuNPs for LDI-MSI @ABA is an adduct of Néhere atnvVz 126, which
zebrash embryos:igure Ghows LDI imaging at Bn spatial distinguishes the protonated form from the overlapping signal
of choline atm/z 104. Choline with a Neadduct would
appear atm/z 63 (because it would be doubly charged),
making this a clear way to distinguish the two NTs. The
corresponding skyline mass spectrum from this MSI run is
available in Supporting Informatiégure S23

Continuing with the exploration of dult to analyze
samples, we have also imaged cells with the same approach.
Previous examples of single-cell MSI have used only high-
resolution instrumerifs or transmission-geometry-based
MALDI imaging® in this demandingeld of research. There
are multiple challenges, including achieving a lateral spatial
resolution that provides useful cellular informatién i),
achieving small enough matrix crystal sizes, and ionizing
enough molecules for stient detection sensitivity. Previous
studies have largely focused on lipids, whereas we have
expanded single-cell MSI to small moledtitpsle 7shows

Figure 7. MSI of neuroblastoma cells at B lateral spatial
resolution: (a) confocal optical image depicting the largest grouping
of cells, (b) [GLU + K] adduct image at/z 185.02, (c) GABA/

Figure 6.MSI of a sagittal zebeh tissue section at B lateral o :
spatial resolution: (a) optical image with eye (E), forebrain (FB),ChOlme image at/'z 104.03, and (d) glucose imagenat 181.00.

midbrain (MB), and hindbrain (HB) indicated, (b) GABA + Na
image at/ z126.01, (c) EP imageratz 184.32, (d) histidine image  neuroblastoma cells that were grown on ITO slides and then

atm/z 156.07, (e) ACh imagemtz 146.10, (f) GLU image at' z imaged at 5m. The optical imageFigure @) shows the
147.09, (g) DA/OT image at/z 154.09, (h) NE image at/z overall cell density within the imaged area, and the molecules
170.11, and (i) 5-HT image mtz 177.22. imaged are glutamine, GABA, and glucose. The entire

rectangular panel was imaged in order to account for potential
resolution of sagittally cryo-sectioned 5 dpf ztbeanbryos.  background signal from the growth media, but nocsighi

The scanned optical imageFigure @ provides anatomical signals were observed outside of areas containing a high
references including the eye, forebrain, midbrain, hindbraitensity of cells.

and spinal cord. New molecules of interest are shown hereThe use of citrate-capped AuNPs that can be pneumatically
including a taurine image ratz 126.01 Figure 6) and a sprayed onto tissues extends the analytical capabilities of LDI-
histidine image at/ z 156.07 Figure @) as well as previously MSI to compounds that have beencdit to ionize or must

listed NTs including EP, ACh, GLU, DA/OT, NE, and 5-HT. rst be derivatized to be ionized and presents a highly time-
With this higher spatial resolution, we have the ability tand cost-eective preparation. While chemical derivatization
discern anatomical features (e.g., brain, eye, and neural tubategies can target primary amines successfully, extensive
in much more detail than lifigure 5Specically, the outline  synthesis and long preparation times are needed and the cost
of the eye and the neural tube line are very apparent, as weltas be prohibitive at a minimum of $7 per slide for the needed
di erentiation between forebrain, midbrain, and hindbraineagents. Even traditional organic matrixes cost at least $1 per
Blank spaces with no NTs detected likely correspond to thedide for reagents and take32imes longer than an AuNP

otic and pharyngeal cavitieddultiple NTs appear in the spraying protocol, which costs less than 1000th of a cent per
organ cavity, including the h&aand intestinal aréawhich slide. The presented methods enable a broad range of new
have previously been established as sites of NT locationdpplications in neuroscience, pharmacology, drug discovery,
embryonic species. In addition to the previously discussedd pathology.
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In summary, we have demonstrated that AUNPseively Vernon Reinhold for the use of their Kratos Axima MALDI-
ionize neurotransmitters, including molecules that arOF MS. K.A.S. would like to thank Dr. Timothy Foley,
secondary and tertiary amines and amino acids of interestAfysse Machalek, and Stefan Olsen at the University of
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