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Enantiopure 1,2:4,5-diepoxypentanes and their dichlorodiol precursors 
have proven to be useful intermediates in the synthesis of complex natural 
products. Since 2000, the Organic Syntheses article2 and the primary reference3 
have been cited over 100 times. While these C2 symmetric bis-electrophiles 
have most commonly been employed in the installation of anti-1,3 diol motifs, 
they have also recently been leveraged in development of new methods and 
utilized in the synthesis of chiral building blocks. These applications, as well 
as the use of these materials in the context of the total synthesis of complex 
natural products, will be discussed.  

The original procedure (Scheme 1A) utilizes a reversible acyl transfer 
reaction of acetylacetone (1) using aluminum trichloride and chloroacetyl 
chloride.4 The reaction is driven forward through removal of acetyl chloride 
by distillation and the resulting dichlorodione is isolated (57–58% yield) as 
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copper complex 2. The dione is then liberated from the metal under acidic 
conditions and subjected to Noyori asymmetric hydrogenation5–9 under high 
pressure to give dichlorodiol R,R-3 in 40% yield after recrystallization, which 
undergoes double cyclization under basic conditions to form bis-epoxide 
R,R-4 (92% yield; >97% ee). The initial report also demonstrates the title 
compound’s utility in synthesizing 1,3-diol motifs (Scheme 1B).3 Treatment 
of bis-epoxide 4 with unhindered nucleophiles affords symmetric anti-1,3-
diols (5) in high yields (61–96%). Controlled monoadditions to bis-epoxide 4 
using organolithium species at low temperatures in the presence of BF3•OEt2 
10 provide epoxy alcohols (6) in good yields (56–79%). These epoxy alcohols 
can be efficiently converted to differentially substituted anti-1,3-diols (7) 
upon treatment with a second nuceophile (63–89% yields), or converted to 
syn-1,3-diols through Mitsunobu inversion11,12 of the free hydroxyl. Early 
applications of these anti-1,3-diol strategies are highlighted in the synthesis 
of 17-deoxyroflamycoin13 and roflamycoin.14 
 

 
Scheme 1. Synthesis of (R,R)-1,2:4,5-diepoxypentane; double addition and 
sequential addition to the bis-epoxide with organometallic nucleophiles 
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Simultaneous Double Addition Strategies in Natural Product Synthesis 
 

In Rychnovsky and co-worker’s synthesis of 17-deoxyroflamycoin (11, 
Scheme 2), the ethereal tetrahydropyran (THP) ring provided a natural 
application of the double addition strategy.13 Treatment of bis-epoxide S,S-4 
with an excess of vinylmagnesium bromide in the presence of a catalytic 
amount of CuI at –78 °C provided bis-homoallylic diol R,R-8 in 90% yield. 
Diol 8 underwent an acid-catalyzed transacetalization to afford high yields 
of acetal 9. The C2 symmetric acetal was then poised to undergo an 
intramolecular Prins cyclization15/desymmetrization with concomitant 
acetate trapping to provide THP-diacetate 10 in 42% overall yield. This 
noteworthy sequence leveraged the symmetry of the bis-epoxide to correctly 
install the 2,4,6-cis-THP stereochemistry, as well as the C19 stereocenter. The 
bis-homoallylic diol (8) generated by this double addition strategy has 
proven useful in a number of other synthetic programs. 
 

 
Scheme 2. Rychnovsky’s synthesis of 17-deoxyroflamycoin 
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transform bis-epoxide R,R-4 to bis-homoallylic diol S,S-8.16 Diol 8 was then 
protected using 2,2-dimethoxypropane under acidic conditions to provide 
acetonide 12 in 95% yield. One of the alkene functional groups of the C2-
symmetric acetal underwent a subsequent symmetry-breaking Wacker 
oxidation.17–19 Treatment of acetonide 12 with catalytic PdCl2 under an 
atmosphere of oxygen using CuCl as the stoichiometric oxidant afforded a 
64% yield of methyl ketone 13, with over-oxidation to the diketone also 
observed (18% yield). The methyl ketone functionality of 13 was critical for 
the installation of the dihydro-g-pyranone moiety in the natural product, 
while the syn-orientation of the C–O bonds was achieved through Mitsunobu 
inversion of the lactone stereocenter. Brückner and Walleser specifically 
mention that while Krische and co-workers have reported on an impressive 
single-step procedure for the catalytic enantioselective synthesis of bis-
homoallylic diol (S,S-4) from 1,3-propanediol (Scheme 4),20 and have used 
this method extensively in the synthesis of polyketide natural products,21,22 
the high cost of catalyst and ligand precluded their use on scale in this case. 
 

 
Scheme 3. Brückner and Walleser’s synthesis of (+)-obolactone 

 

O O

Ph

O

O

OO OHOH

MgBr

CuI (0.4 equiv)
THF, –78 °C

95%

(4.0 equiv)

OO OO

O

p-TSA (cat.)

CuCl (1.0 equiv), O2
PdCl2 (10 mol%)

DMF:H2O, rt
64%

Me2C(OMe)2, rt
95%

R,R-4 S,S-8

12

2' 6 4

5'

2' 6

4
5'

(+)-obolactone (14)

13



 

Org. Synth. 2019, 96, 361-381           DOI: 10.15227/orgsyn.096.0361 365 

 
Scheme 4. Krische’s one-step synthesis of S,S-8. 

 
Brückner and Walleser also used bis-homoallylic diol R,R-8 as the 
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toluene at 100 °C to afford bicyclic intermediate 18. This bicyclic lactone was 
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further elaborated to acetonide 19 constituting a synthesis of the C1–C10 or 
“southwestern” portion of the polyketides. 

Another example of double addition using an organomagnesium 
nucleophile was utilized in Eustache and co-workers synthesis of attenol A 
(27, Scheme 6).25 Treatment of bis-epoxide R,R-4 with 3-butenylmagnesium 
bromide in the presence of CuI at –40 °C provided diene diol S,S-22 in 88% 
yield. Diol S,S-22 was then converted to PMP-acetal 23 in high yield (88%) 
through acid-catalyzed transacetalization. Reductive cleavage of the benzylic 
C–O bond by the action of sodium cyanoborohydride under acidic conditions 
afforded PMB ether 24 in 76% yield. The free hydroxyl group of mono-
protected diol 24 was then poised for intermolecular iodoetherification when 
treated with N-iodosuccinimide (NIS) in the presence of potassium 
carbonate. The resulting differentially protected diol derivative 25 was 
obtained in 80% yield and carried forward as inconsequential mixture of 
diastereomers to access spiroketal 26 en route to attentol A. 
 

 
Scheme 6. Eustache’s synthesis of attenol A 
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component linchpin coupling strategy utilized bis-epoxide S,S-4 as the 
central five carbon piece of the C16–C28 fragment of the natural products. 
The sequence began with lithiation of silyl dithiane 28, which opened the 
epoxide of (–)-benzyl glycidyl ether 29 to give alkoxide 30. Upon warming, 
the transient intermediate underwent an intramolecular [1,4]-Brook 
rearrangement28,29 to generate an organolithium poised for double addition 
into bis-epoxide S,S-4 to afford diol 31 in 59% overall yield. This remarkable 
sequence forged four C–C bonds and provided the entire carbon framework 
of the C16–C28 fragment in a single operation. 
 

 
Scheme 7. Smith’s synthesis of mycoticin A and B 
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provide bicyclic lactone 36 in 87% yield. This key transformation installed the 
requisite stereochemistry of the central portion of the natural product, as well 
as appropriate synthetic handles for further functionalization. 

 

 
Scheme 8. Tang’s synthesis of (–)-kumausallene 

 
Sequential Double Addition Strategies in Natural Product Synthesis 
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Scheme 9. Rychnovsky’s synthesis of roflamycoin 
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Wilkinson’s catalyst and trimethyl phosphite displaced the allylic carbonate 
to forge the C–N bond of 50 in high conversion and selectivity (84% yield; dr 
³ 30:1). This sequence rapidly provided the required stereochemistry for the 
bicyclic guanidinium portion of (–)-batzelladine D. 
 

 
Scheme 10. Evan’s synthesis of (–)-batzelladine D 
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bis-allylic diol S,S-35 proceeded in high yields (76% and 80% yield, 
respectively) (Scheme 11).37 This was a critical reaction in the synthesis of 
chiral phosphate triesters. Condensation of diol 35 onto POCl3 in the presence 
of Et3N and DMAP provided cyclic chlorophosphate diester 52. Final chloride 
displacement was carried out with lithium allyloxide in THF at –40 °C to 
afford triene 53, which underwent a ring-closing metathesis reaction in the 
presence of Grubbs II catalyst24 to provide phosphate triester S,S,PS-54. 
 

 
Scheme 11. Hanson’s synthesis of tris-allylic phosphate triesters 

 
Hanson and co-workers have shown these tethered phosphate esters to 

be versatile intermediates for organic synthesis.36 In addition to synthesis of 
complex natural products such as those seen in Figure 1,38–41 recent extensions 
of this technology include probing the complementary reactivity of the 
corresponding phosphite–borane tethers.42,43 While these reports 
demonstrate the utility of P-tethered building blocks, perhaps none more 
clearly highlight the versatility of these intermediates than Hanson’s 
approach to dolabelide C.41 Retrosynthetic analysis of this 24-membered 
macrolide produced by the sea hare D. auricularia (58, Scheme 12) divided the 
macrolactone into two large fragments (59 and 60) that can come from the 
enantiomeric phosphate triesters R,R,PR-54 and S,S,PS-54. 
 

Cl Cl
OH OH

O O Me3S+I–, nBuLi
THF, –10 °C to rt

76%

Me3S+I–, nBuLi
THF, –30 °C to rt

80%

OH OH

S,S-3

S,S-35 52

S,S-4
P

O
O

Cl

O

P
O

O

O

O
P

O
O

O

O

POCl3, Et3N
DMAP, CH2Cl2

90%

THF, –40 °C
80–90%

OLi
Grubbs II cat.

(3 mol%)
CH2Cl2

81%
P

O
O

O

O

53 S,S,PS-54

Key features:
SN2 electrophile
SN2' electrophile
labile bonds
  • P–O (3)
  • C–O (3)



 

Org. Synth. 2019, 96, 361-381           DOI: 10.15227/orgsyn.096.0361 372 

 
Figure 1. Complex products synthesized using phosphate triester 

building blocks 
 

 
Scheme 12. Hanson’s retrosynthetic analysis of dolabelide C 
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required treatment with 2-nitrobenzenesulfonyl hydrazine and Et3N as the 
phosphate esters are not tolerant of more basic diimide reduction protocols. 
The resulting cyclic alkene 63 was then subjected to a Pd-catalyzed formate 
reduction that regioselectively delivered hydride to the C10 position 
resulting in the desired terminal alkene 64. With a majority of the northwest 
coupling fragment assembled, alkene 64 was further elaborated to carboxylic 
acid 59 in 11 steps. 
 

 
Scheme 13. Hanson’s approach to the C1–C14 fragment of dolabelide C 
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Scheme 14. Hanson’s 2nd generation synthesis of the C15–C30 fragment of 

dolabelide C 
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synthetic route developed for the bis-epoxide and dichlorodiol precursors, 
which speaks to the reliability of the procedure. In addition to enabling new 
technologies, these intermediates have also found utility in the context of 
providing straightforward access to enantioenriched variants of classically 
important synthetic intermediates. 
 
Aubé’s extension through synthesis of valuable chiral building blocks 
 

As shown in Figure 2, 4-hydroxy-2-cyclopentenones (4-HCP) have long 
been a privileged scaffold in the synthesis of biologically active compounds, 
including prostaglandins, alkaloids and terpene natural products.47–49 As 
such, the ability to access either enantiomer of this class of molecules has been 
a long standing area of interest for synthetic organic chemists. Aubé and co-
workers provided a compelling strategy to synthesize a variety of hydroxyl 
protected 4-HCP derivatives in enantioenriched forms.50 The synthetic 
strategy, shown in Scheme 15, involves using Hanson’s protocol to access bis-
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allylic diol R,R-35 from dichlorodiol R,R-3. Monoprotection of C2-symmetric 
diol R,R-35 proceeded in high yields (66–95%) for a variety of protecting 
groups. The resulting dienes (72) were able to smoothly undergo a RCM 
reaction using Grubbs I catalyst51 to give cyclopentenol derivatives (73, 88–
92% yields), which were then oxidized with pyridium chlorochromate to the 
corresponding cyclopentenones (74) in high yields (92–94%) on gram scale. 
In addition, this report also provided conditions for further functionalization 
of both the cyclopentenol derivatives and 4-HCPs. 
 

 
Figure 2. Select examples of natural products synthesized using 4-HCPs 

 

 
Scheme 15. Aubé’s synthesis of enantioenriched 4-HCP derivatives 

 
Singh and Aubé used dichlorodiol R,R-3 as a key intermediate in their 

syntheses of spatially directed cyclohexane-1,3-diols (Scheme 16).52 
Analogous to the monoprotection of bis-allylic diol R,R-35, dichlorodiol R,R-
3 underwent monohydroxyl protection by the action of TIPSCl in the 
presence of n-BuLi to afford dichloride 75 in 92% yield. To synthesize 
cyclohexyl derivatives, dichloride 75 was then converted to chloroepoxide 76 
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in 95% yield under basic conditions. In the presence of Smith’s linchpin 
dithiane 77, chloroepoxide 76 underwent an epoxide opening/Brook 
rearrangement sequence. The transient carbanion subsequently displaced the 
remaining chloride to provide differentially protected cyclohexane 78, which 
can be selectively deprotected in a variety of ways. This method is 
complementary to the work of Linclau et al., who used dithiane linchpin 
coupling on bis-epoxides (e.g. 4) to construct cyclopentyl nucleosides.53,54 
 

 
Scheme 16. Singh and Aubé’s synthesis of cyclohexyl trans-1,3-diols 

 
In addition to cyclohexane-1,3-diols, Singh and Aubé also used 

dichloride 75 to synthesize piperidine and thiane derivatives as well (Scheme 
17). In the case of piperidine derivatives, dichloride 75 was first converted to 
diiodide 82 through a double Finkelstein reaction.55,56 This more potent bis-
electrophile was primed to undergo a double displacement with 
benzylamine to give piperidine 83 in 88% yield. The increased nucleophilicity 
of sulfur meant that dichloride 75 was a competent bis-electrophile for the 
double displacement and provided thiane 85 in 88% yield when treated with 
sodium sulfide. These heterocycles also underwent standard silyl group 
cleavage to give the corresponding 1,3-diols (84 and 86) in high yields (94% 
and 92%, respectively). 
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Scheme 17. Singh and Aubé’s synthesis of piperidinyl and thianyl trans-

1,3-diols 
  
Concluding Remarks 
 
 The enantiopure forms of 1,2:4,5-diepoxypentane (4) and dichlorodiol (3) 
have been used by many groups as chiral precursors for organic synthesis. 
The original procedure is convenient and scalable, providing access to either 
enantiomer based on readily available and inexpensive chiral BINAP ligands. 
Displacement at the primary positions lead to a variety of simple enantiopure 
cyclic and acyclic building blocks. These typically occur either through 
simultaneous double addition of organometallic nucleophiles to give C2 
symmetric diols or sequential double addition to give asymmetric diols. 
While the resulting 1,3-diol motif has most commonly found utility in the 
context of polyketide natural product synthesis, applications to alkaloid and 
terpene natural products have also been described. In addition, this method 
has provided straightforward access to bicyclo[4.3.1]phosphate triesters and  
4-hydroxycyclopentenones derivatives, themselves valuable synthetic 
intermediates. Based on these recent developments, 4 and 3 will continue to 
provide synthetic chemists with useful entry points for chiral synthesis and 
enable new modes of reactivity. 
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