Effectiveness of Gait Interventions in Improving Gait in Adults with Ataxia:

A Systematic Review

Megan Fasano, SPT Meghan Goyden, SPT Lauren Bonitz, SPT Caroline Segota, SPT

Jennifer Schwartz, PT, DPT, Board-Certified Clinical Specialist in Neurologic Physical Therapy

Overview

- Background
- Purpose
- Methods
- Search Criteria
- PRISMA
- Results

- Conclusion
- Limitations
- Future Research
- Clinical Relevance
- Acknowledgements

Background

Ataxia:

- Lack of coordination characterized by progressive disturbances related to balance and gait
- Often caused by acquired brain injury (TBI, CVA or infection) or degenerative cerebellar changes^{1,2}

Symptoms Of Ataxic Gait

- Lack of proper coordination
- Unsteady gait with a potential to stumble and fall
- Frequent falling episode
- Lack of muscle coordination in the legs
- Ambulation difficulties

Kerkar P. Symptoms of Ataxic Gait. https://www.epainassist.com/brain/ataxic-gait. Reviewed February 15th, 2018. Accessed October 5th, 2018.

Background

- Traditionally, patients with ataxic gait have been treated using compensatory strategies such as ankle weights/weighted vests, or using assistive devices³
 - Although widely used in everyday practice, there is no significant research on the efficacy of these strategies⁴
- There has been no consensus on the best intervention to improve ataxic gait⁴

A STANDARD SOLAR S

Purpose

• The purpose of this study was to determine the most effective gait intervention in improving gait in patients with ataxia.

Methods

Databases

- CINAHL
- Health Source: Nursing/Academic Edition
- MEDLINE/PubMed
- Proquest
- Hand search

Search Limits

- Last 10 years 2008-2018
- English
- Human subjects
- Scholarly (Peer-Reviewed) articles

Search Terms

(ataxia) AND ("gait training" or "locomotion training" or "gait rehabilitation")

CR. HINNEYLU

Selection Criteria

- **Diagnosis:** ataxia
- Age: adult (18 or older)
- Gender: male or female
- **Outcomes:** objective gait measurements
 - Having an outcome measure with a gait component
- Intervention: any gait intervention
 - A gait rehabilitation strategy that directly involves ambulation or pre-ambulation
 - Balance training alone was not considered a gait intervention

Article Title				
A Comparative Study of Conventional Physiotherapy versus Robot-Assisted Gait Training Associated to Physiotherapy in Individuals with Ataxia after Stroke. ⁵				
The effect of a task-specific locomotor training strategy on gait stability in patients with cerebellar disease: a feasibility study. ⁶	4			
Partial Body Weight-Supported Treadmill Training in Spinocerebellar Ataxia. ⁴	4			
Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration. ¹				
Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: A single system design. ³	5			
Challenge-oriented gait and balance training in sporadic olivopontocerebellar atrophy: a case study. ⁷	5			
Delayed regaining of gait ability in a patient with brain injury: A case report. ⁸	5			
Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke. ⁹	5			
Treadmill training for ataxic patients: A single-subject experimental design. ²	5			

Results¹⁻⁹

- Samples Ranged: 1-19 participants (58 total)
- Intervention parameters: 1-60 sessions lasting 10-240 minutes
- **Duration of the interventions:** 1 day-20 weeks

Interventions included:

- Treadmill training^{1,2}
- Partial body weight support³⁻⁵
- Dynamic gait training⁷
- Auditory cueing⁹
- Conventional gait training^{6,8}

Lokomat®. Optimal Patient Challenge. https://www.hocoma.com/solutions/lokomat/. Accessed October 25, 2018.

All 9 studies found statistical and/or clinical improvements in gait outcomes such as:

- **Spatio-temporal gait parameters** (cadence, step length/width, gait speed, etc.)^{2,3,6,7,9}
- **Complex gait** (Timed Up and Go test, Dynamic Gait Index)^{2,4,5,7}
- Ataxia (Scale for Assessment and Rating of Ataxia)^{1,5,8}
- Independence (Functional Ambulation Category)^{3,8}
- **Gait quality** (Rivermead Visual Gait Assessment)²

Intervention	Sample Size	Intervention Parameters	Duration	Outcomes Improved	
Robot assisted gait training vs. therapist assisted gait training⁵	N=15	60 min 3x per week	5 months	Complex gait (TUG), Ataxia (SARA)	
Conventional gait training (with weight shifts, verbal cuing, etc.) ⁶	N=19	1.5 hrs 2x per week	12 weeks	Spatio-temporal gait parameters (COM displacement, gait speed, step length/width, stance time)	
Partial Body Weight Support⁴	N=8	50 min 2x per week	18 weeks	Complex gait (DGI)	
Treadmill training (with visual cues) ¹	N=10	1 hrs 10 sessions	5 weeks	Ataxia (SARA)	
Conventional gait training (with trunk stabilization) ³	N=1	60-90 min 28 sessions	22 weeks	Spatio-temporal gait parameters (10 MWT) , Independence (FAC)	

Intervention	Sample Size	Intervention Parameters	Duration	Outcomes Improved
Dynamic Gait (obstacle course, gait with head turns, stop and goes) ⁷	N =1	1.5-2 hrs 5x per week	12 weeks	Complex gait (DGI), Spatio- temporal gait parameters (gait velocity)
Conventional gait training (trunk stabilization, physical conditioning) ⁸	N=1	30 min 5x per week	2 months	Ataxia (SARA), Independence (FAC)
Auditory cueing (metronome) ⁹	N=1	1 session non-specified	1 day	Spatio-temporal gait parameters (Step time, stance time, double support time, step length)
Treadmill training (with visual cues) ²	N=2	30 min 3x per week	7 weeks	Spatio-temporal gait parameters (Step length, cadence, speed), Complex gait (TUG), Gait quality (RVGA)

Conclusions

There is a mixed level of evidence to support task-specific gait interventions for patients with ataxia.

- High quality evidence:
 - Both over ground gait training with therapist assistance and robotic assisted gait training were found to be equally as effective in improving gait in adults with ataxia.
 - Evident by improved complex gait with reduced ataxia⁵

Conclusions

There is a mixed level of evidence to support task-specific gait interventions for patients with ataxia.

- Low quality evidence:
 - Treadmill training (with and without obstacles), body weight support, auditory cueing, and dynamic gait training can improve ataxic gait as evident by improvements in:
 - Spatio-temporal parameters^{2,3,6,7,9}
 - Complex gait^{2,4,5,7}
 - Ataxia^{1,5,8}

- Independence^{3,8}
- Gait quality²

Limitations

- Small samples
- Vague gait interventions
- Lack of uniform outcome measures
- Lack of control groups
- Long-term follow up

Future Research

- In order to determine the optimal gait intervention for patients with ataxia, future research is needed to:
 - Develop specific ataxic gait outcome measures
 - Implement specific gait interventions for patients with ataxic gait
 - Include higher quality randomized control trials

Clinical Relevance

- Historically, ataxic gait has been treated by weighting the patient's trunk and lower limbs and through symptom management.³
 - Recent research has shown that this is not the most effective rehabilitation for these patients.
- In order to move away from symptom management, clinicians should consider task-specific gait training to meet the individual needs of each patient with ataxia.

Acknowledgements

- Dr. Jennifer Schwartz, PT, DPT, Board-Certified Clinical Specialist in Neurologic Physical Therapy
- Dr. Renee Hakim, PT, PhD, Board-Certified Clinical Specialist in Neurologic Physical Therapy
- Dr. John Sanko, PT, EdD
- Dr. Tracey Collins, PT, PhD, MBA, Board-Certified Clinical Specialist in Geriatric Physical Therapy
- Physical Therapy Department at the University of Scranton

References

1. Fonteyn E, Heeren A, Engels J, Boer J, van de Warrenburg B, Weerdesteyn V. Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration. *Gait Posture*. 2014;40(1):247-251. doi:10.1016/j.gaitpost.2014.04.190.

2. Daniela V, Schettino R, Rolla C, Teixeira V, Cavalcanti Furtado S, de Mello Fiqueiredo E. Treadmill training for ataxic patients: a single-subject experimental design. *Clin Rehabil.* 2008;22(3):234-41. doi: 10.1177/0269215507081578.

3. Freund J, Stetts D. Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design. *Physiother Theory Pract.* 2010;26(7):447-458. doi:10.3109/0959398090353223.

4. Oliveira L, Martins C, Rodrigues E, et al. Partial body weight-supported treadmill training in spinocerebellar ataxia. *Rehabil Res Pract.* 2018;1-8. doi:10.1155/2018/7172686.

5. Belas dos Santos M, Barros de Oliveira C, dos Santos A, Garabello Pires C, Dylewski V, Arida R. A Comparative study of conventional physiotherapy versus robot-assisted gait training associated to physiotherapy in individuals with ataxia after stroke. *Behav Neuro*. 2018;1-6. doi:10.1155/2018/2892065.

References

6. Im S, Kim Y, Kim K, Han J, Yoon S, Park J. The effect of a task-specific locomotor training strategy on gait stability in patients with cerebellar disease: a feasibility study. *Disabil Rehabil.* 2017;39(10):1002-1008. doi: 10.1080/09638288.2016.1177124.

7. Landers M, Adams M, Acosta K, Fox A. Challenge-oriented gait and balance training in sporadic olivopontocerebellar atrophy: a case study. *J Neurol Phys Ther*. 2009;33(3):160-168. doi:10.1097/NPT.0b013e3181b511f4.

8. Jang SH, Kwon HG. Delayed regaining of gait ability in a patient with brain injury: a case report. *Medicine*. 2016;95(38) 1-6. doi: 10.1097/MD.0000000000004898.

9. Wright RL, Bevins JW, Pratt D, Sackley CM, Wing AM. Metronome cueing of walking reduces gait variability after a cerebellar stroke. *Front Neurol*. 2016;7:84. 1-6. doi: 10.3389/fneur.2016.00084.

Questions?

