Effects of Unstable Surface Lower Extremity Resistance Training on Balance in Older Adults: A Systematic Review

Thomas Helmstetter, SPT Mark Merli, SPT Ansis Ramolins, SPT Dr. Leininger, PT, PhD, OCS

Presentation Overview

- Objectives
- Background
- Purpose
- Methods
- PRISMA
- PEDro Scores

- Results
- Conclusion
- Limitations
- Future Research
- Clinical Relevance
- Acknowledgments

Objectives

By the end of this presentation, attendees will:

- 1. Understand the potential benefits of incorporating unstable surfaces into resistance training programs to optimize older adult balance outcomes.
- 2. Understand how to appropriately and safely utilize unstable surfaces when prescribing a resistance training program.

Background

- Aging causes decreased function of body systems that maintain balance, potentially leading to falls which are the leading cause of injury in older adults.¹
- Past research has supported lower extremity (LE) resistance training on stable surfaces for improving balance in older adults.²⁻³
- Utilizing unstable surfaces for LE resistance training to improve balance has not been thoroughly discussed.⁴

Background

Theorized additive benefits of unstable surface LE resistance training:

- Normalization of postural reflexes⁵
- Enhanced trunk activation⁴
- Improved proprioception in the LEs⁵
- Increased sensitivity of cutaneous receptors in the soles of the feet⁵

Purpose

• The purpose of this systematic review was to determine the effects of unstable surface LE resistance training on balance in older adults.

Methods

- Search Engines:
 - PubMed, ProQuest, CINAHL, and Google Scholar
- Limits:
 - Human Subjects, Peer-Reviewed, Randomized Control Trials (RCTs)
- Search Terms:
 - ("unstable surfaces" OR "instability") AND ("stable surfaces" OR "steady surfaces") AND ("lower extremity" OR "LE") AND ("resistance training" OR "strength training") AND ("balance") AND ("older adults" OR "geriatrics" OR "seniors")

Selection Criteria

- Selection criteria included:
 - RCT design
 - Participants: 65+ years of age with no history of neurologic diagnoses affecting the LE's or recent LE fractures/surgeries
 - Interventions: LE strength training protocols on unstable surfaces
 - Comparator: LE strength training protocols on stable surfaces
 - Outcomes: Standardized balance measures

PRISMA

PEDro Scores

Studies	Eligibilit	stiena pandon	location conces	iled ion area	nparison Bind	Jubiects Bind	herapists Bind As	Adector	ate wup nienti	onto	onpaison point sim	ate patro 500	,e
Piraua et al. ³	Y	Y	Y	Y	N	N	N	Y	Y	Y	Y	7/10	
Eckardt ⁴	Y	Y	Y	Y	N	N	N	Y	Y	Y	Y	7/10	
Hirase ⁵	Y	Y	Y	Y	N	N	N	Y	Y	Y	Y	7/10	
Zhou, Yuan, Ma ⁶	Y	Y	Y	Y	N	N	N	N	Y	Y	Y	5/10	
Hamed et al. ⁷	Y	Y	Y	Y	N	N	N	Y	Y	Y	Y	7/10	
Eckardt and Rosenblatt ⁸	Y	Y	Y	Y	N	N	Y	N	Y	Y	Y	7/10	
Kim, Choi, Kim ⁹	Y	Y	Y	Y	N	N	N	Y	Y	Y	Y	6/10	
Cavalcante ¹⁰	Y	Y	Y	Y	N	N	N	N	Y	Y	Y	6/10	
Eckardt, Braun, Kibele ¹¹	Y	Y	Y	Y	Y	N	Y	N	Y	Y	Y	8/10	

- A total of 266 articles were screened
 - \circ 9 RCTs met the selection criteria
- Samples ranged from 14-86 subjects (511 total)
 - Average age of 72.73 years

Intervention parameters:

- Study durations ranged from 3 weeks-6 months (1-5 sessions/week) and session durations ranged from 30-60 minutes
- Unstable surface groups (USG) differed by exercise selection and the instability devices used
- Stable surface groups (SSG) performed various LE resistance training protocols on firm, even ground

The USG demonstrated statistically significant improvements in balance outcomes compared to the SSG in five⁵⁻⁹ studies:

- The USG held tandem stance 12.9 s longer and single leg stance (SLS) 6.0 s longer than the SSG after 2 months (p<0.02).⁵
- The USG walked 11.2% faster in the 10mWT after 3 weeks of training while the SSG improved by 6.6% (p=0.049).⁶

- The USG showed a significantly larger effect size than the SSG for center of pressure to the limits of stability, d=1.61 and d=0.23, respectively.⁷
- The USG increased their side reaching in the multidirectional reach test by 14% (p=0.036) while the SSG improved by 4% (p=0.398).⁸
- The USG improved their SLS on foam from 9.42 to 15.30 s (p=0.03) after 8 weeks while the SSG improved from 7.07 to 11.27 s (p=0.20).⁹

Conclusion

- There is **mixed evidence** in support of unstable surface LE resistance training programs for improving balance in older adults.
- Further high-level research should be conducted to determine optimal LE exercises and dosage in order to provide maximal balance gains in older adults.

Limitations

- Small sample sizes
- Large age range which led to high variability in performance
- Subject variability may have also led to different motor strategies utilized
- Study protocols varied by frequency and duration
- Results cannot be generalized to less healthy or frail older adults

Future Research

- Future studies should focus on:
 - Optimal training dosage, intensity, frequency, and duration parameters to maximize prevention of future falls
 - Studying the underlying mechanisms to explain why unstable surfaces may promote additional balance improvements to prevent falls

Clinical Relevance

- Implementing unstable surface resistance training may reduce risk of future falls as evident by TUG fall risk cutoff scores for community dwelling older adults.^{5,12}
- It may also decrease risk of injurious falls as evident by SLS time predictors.¹³
- LE resistance training on unstable surfaces did not lead to increased adverse events and **may** be considered by clinicians when balance training with older adults, in addition to training on stable surfaces.

Acknowledgments

- Renée Hakim, PT, PhD, NCS
- Ian O'Hara, MS
- Jiho Kim

References

- 1. Cuevas-Trisan R. Balance problems and fall risks in the elderly. *Clin Geriatr Med.* 2019;35(2):173-183. doi:10.1016/j.cger.2019.01.0082.
- 2. Sarabon N, Kozinc Z. Effects of resistance exercise on balance ability: systematic review and meta-analysis of randomized controlled trials. *Life (Basel)*. 2020;10(11):284. doi: 10.3390/life10110284.
- 3. Pirauá A, Cavalcante BR, Alves de Oliveira VM, et al. Effect of 24-week strength training on unstable surfaces on mobility, balance, and concern about falling in older adults. *Scand J Med Sci Sports*. 2019;29(11):1805-1812. doi: 10.1111/sms.13510.
- 4. Eckardt N. Lower-extremity resistance training on unstable surfaces improves proxies of muscle strength, power and balance in healthy older adults: a randomised control trial. *BMC Geriatr.* 2016;16:191. doi: 10.1186/s12877-016-0366-3.
- 5. Hirase T, Inokuchi S, Matsusaka N, Okita M. Effects of a balance training program using a foam rubber pad in community-based older adults: a randomized controlled trial. *J Geriatr Phys Ther*. 2015;38(2):62-70. doi: 10.1519/JPT.0000000000023.
- 6. Zhou TY, Yuan XM, Ma XJ. Canan outdoor multi surface terrain enhance the effects of fall prevention exercise in older adults? A randomized controlled trial. *Int J Environ Res Public Health*. 2020;17(19):7023. doi:10.3390/ijerph17197023.
- 7. Hamed A, Bohm S, Mersmann F, Arampatzis A. Exercises of dynamic stability under unstable conditions increase muscle strength and balance ability in the elderly. *Scand J Med Sci Sports*. 2018;28(3):961-971. doi:10.1111/sms.13019.

References

- 8. Eckardt N, Rosenblatt NJ. Instability resistance training decreases motor noise during challenging walking tasks in older adults: a 10-week double-blinded RCT. *Front Aging Neurosci.* 2019;11:32. doi: 10.3389/fnagi.2019.00032.
- 9. Kim EJ, Choi YD, Kim MJ. The effects of unstable surface training on balance and lower extremity muscle activity of elderly women. *J Korean Neurol Ther Assoc.* 2016;20(2):17-23.

https://kmbase.medric.or.kr/Main.aspx?d=KMBASE&i=1101520160200020017&m=VIEWAccessed May 2, 2021.

- 10.Cavalcante BR, de Souza MF, Falck RS, et al. Effects of resistance exercise with instability on cognitive function (REI study): a proof-of-concept randomized controlled trial in older adults with cognitive complaints. *J Alzheimers Dis* 2020;77(1):227-239. doi:10.3233/jad-200349.
- 11.Eckardt N, Braun C, Kibele A. Instability resistance training improves working memory, processing speed and response inhibition in healthy older adults: A Double-Blinded Randomised Controlled Trial. *Sci Rep.* 2020;10(1). doi:10.1038/s41598-020-59105-0
- 12.Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the timed up & go test. *Phys Ther.* 2000;80(9):896-903. doi:10.1093/ptj/80.9.896.
- 13.Vellas BJ, Wayne SJ, Romero L, Baumgartner RN, Rubenstein LZ, Garry PJ. One-leg balance is an important predictor of injurious falls in older persons. *J Am Geriatr Soc.* 1997;45(6):735-738. doi:10.1111/j.1532-5415.1997.tb01479.x.

Appendix

Outdoor multi-surface terrain environment

BOSU ball

Foam pad

Appendix Cont.

TOGU Aero-step Balance Trainer pad

Posturomed device

Study	Unstable Surface Group (USG) Parameters	Key findings				
Piraua et al. (2019) ³	Frequency: 24 weeks, 3x/week Duration/Volume: 30-60 mins, 2-5 sets and 7-12 reps Exercises: 45° ROM leg press, bridges Equipment: BOSU ball, balance disc, Swiss ball	There were no statistically significant differences between the USG and the stable surface group (SSG) in TUG, BBS, and FES-I scores.				
Eckardt (2016) ⁴	Frequency: 10 weeks, 2x/week Duration/Volume: 60 mins Exercises: Squats, stair walker, front lunges, bridges, farmer carries Equipment: BOSU ball, wobble board, inflatable disc	Both groups improved in the FRT, however free weight USG (F-USG) revealed the largest effect size. There were no statistically significant differences between groups in TUG and FRT scores.				
Zhou, Yuan, Ma (2020)⁵	Frequency: 5x/week for 3 weeks Duration: 30 min sessions Exercises: Bodyweight squats, single-leg squats, heel raises Equipment: Outdoor environment consisting of grass, sand, gravel, pebbles and plastic	The USG showed statistically significant improvements when compared to the SSG for the 10 mWT. No statistically significant differences were seen in TUG times, SLSTEO, or SLSTEC.				
Hamed et al. (2018) ⁶	Frequency: 2x/week for 14 weeks Duration: 1.5 hour sessions Exercises: Lunges, jumping, squatting Equipment: Wedged soft mat, soft pad, BOSU ball, balance beam, semicircular block, Posturomed device	The USG showed a significantly higher effect size than the SSG for improvements in their center of pressure towards the anterior limit of stability.				

Hirase (2015) ⁷	Frequency: 1x/week for 4 months Duration: 60 min sessions Exercises: Heel raises, toe raises, free-leg swinging Equipment: Foam rubber pad	The USG held SLS and tandem stance significantly longer than the SSG after 2 months. The USG had significantly greater improvements in their TUG and FES scores when compared to the SSG.			
Eckardt and Rosenblatt (2019) ⁸	Frequency: 2x/week for 10 weeks Duration/Volume: 60 min sessions Exercises: Squats, stair walker, front lunges, bridges, farmer carries Equipment: BOSU ball, wobble board, inflatable disc	Free weight USG group increased its side reaching in the MDRT outcome measure by 14%, compared to the SSG group which only improved by 4%.			
Kim, Choi, Kim (2016) ⁹	Frequency: 2x/week for 8 weeks Duration: 40 min sessions Exercises: Isometric squats, weight shifts in squat stance Equipment: TOGU Aero-step Balance Trainer pad	The USG held SLS on a soft surface for a significantly longer time than the SSG. While not statistically significant, the USG improved in their TUG time to a greater degree than the SSG.			
Cavalcante (2020) ¹⁰	Frequency: 3x/week for 12 weeks Duration/Volume: 3 sets of 10-15 reps for each exercise Exercises: Wall ball squat, horizontal leg press, bridges, standing calf raises Equipment: BOSU ball, balance disc, Swiss ball	The USG showed non-statistically significant improvements in TUG and SPPB scores compared to the SSG.			
Eckardt, Braun, Kibele (2020) ¹¹	Frequency: 2x/week for 10 weeks Duration: 60 min sessions Exercises: Squats, forward lunges Equipment: BOSU ball, foam pad, soft pad	There were no significant differences for improvements in FES-I scores between the USG and the SSG after the intervention period.			

Questions?

