Feasibility, Safety, and Functional Impact of Physical Therapy During Hemodialysis: a Systematic Review

Kimberly A. Kirkpatrick, SPT
Kyle J. Reavey, SPT
Nicholas A. Longobardi, SPT
Dana Maida, PT, DPT, GCS
Barbara Wagner, PT, DPT, MHA
Background

• Prevalence of chronic kidney disease (CKD) among adult populations in the United States from 2011-2014 was 14.8%\(^1\)

• Hospitalization of patients with end stage renal disease (ESRD) accounts for approximately 33% of total Medicare expenditures for patients on dialysis\(^1\)

• Patients with ESRD are admitted to the hospital an average of twice a year\(^1\)

• The average length of stay in the hospital for patients with ESRD in 2015 was 11.5 days\(^1\)

• Among all patients on hemodialysis (HD) discharged from the hospital for any reason, 37.1% are re-hospitalized within 30 days\(^1\)
Background cont.

• Benefits of exercise among patients receiving HD:
 o Improved aerobic capacity2-4 and functional capacity5
 o Improved exercise tolerance2 and physical fitness6,7
 o Improved systolic blood pressure2,4,7
 o Decreased muscle wasting8,9
 o Improved nutrition7,10
 o Improved lipid metabolism4
 o Improved control of diabetes4
 o Improved mental functioning4,6,12,13
 o Improved physical functioning4,5,9,12-14
 o Improved quality of life4-7,9,10,12,13
 o Decreased risk of cardiovascular related mortality4,5,10,13
• Before Dialysis
 o Uremic toxins11
 o Decreased brain perfusion11
 o Cognitive impairments:11
 • Dullness of intellect
 • Quiet stupor
 • Sluggishness of manner
 • Drowsiness

• After Dialysis
 o Cognition improves11,13
 o Physical fatigue13
• Traditional physical therapy guidelines state:
 o “Therapeutic exercise and airway clearance may be performed as indicated, but mobilization activities are relatively contraindicated during HD and the inflow or outflow of the dialysate during peritoneal dialysis (PD)”15
 o “Mobility treatments are contraindicated while a patient is undergoing any form of dialysis”16

• Lack of recent research support
Purpose

• Determine if physical therapy treatment during dialysis is safe, feasible, and effective

• Determine the impact of intradialytic physical therapy on functional mobility
Methods
Methods

Databases:
• Proquest Central
• Medline/Pubmed
• Cinahl Complete

Search Limitations:
• Human subjects
• English language
• 2006-2016
• Peer reviewed journals
Search Terms:

• (physical therapy) AND ((during dialysis) OR (intradialytic)) AND ((physical performance) OR (mobility) OR ((walking) or (ambulation) or (gait)) OR ((fatigue) or (endurance)) OR (balance)) AND ((acute) OR (hospital) OR (inpatient) OR (outpatient))
Eligibility Criteria

Inclusion Criteria:
- Intradialytic PT or intradialytic exercise
- Adults 18 years and older
- Functional performance outcome measures
- Randomized Control Trials or Quasi Experimental

Exclusion Criteria:
- Pre-dialysis protocols
- Post-dialysis protocols
- Patients younger than 18 years old
- Impairment level outcome measures only
- Cohort studies
- Case studies or case series
Initial search n=427

After title and abstract screening n= 83

After removing duplicates n=73

Hand search n=5

After abstract and article screening for inclusion criteria n= 8

Reasons for exclusion:
Lacking intervention n=5
Not intradialytic n=35
No physical performance outcomes n=13
Pediatric subjects n=2
No functional outcomes n=3
Cohort studies n=7
Total: n=65

Articles for review n= 13
MINORS Scale

<table>
<thead>
<tr>
<th>Article</th>
<th>Score 1</th>
<th>Score 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groussard et al^3</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Liao et al^5</td>
<td>23</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Bohm et al^6</td>
<td>16</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Orcy et al^7</td>
<td>16</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Cheema et al^8</td>
<td>18</td>
<td>19</td>
<td>18.5</td>
</tr>
<tr>
<td>Chen et al^9</td>
<td>17</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>Bulckaen et al^10</td>
<td>14</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>
MINORS Scale cont.

<table>
<thead>
<tr>
<th>Article</th>
<th>Score 1</th>
<th>Score 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segura-Orti et al14</td>
<td>21</td>
<td>20</td>
<td>20.5</td>
</tr>
<tr>
<td>Chang et al17</td>
<td>20</td>
<td>19</td>
<td>19.5</td>
</tr>
<tr>
<td>Dobsak et al18</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Simo et al19</td>
<td>20</td>
<td>19</td>
<td>19.5</td>
</tr>
<tr>
<td>Simo et al20</td>
<td>18</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Wilund et al21</td>
<td>18</td>
<td>22</td>
<td>20</td>
</tr>
</tbody>
</table>
Results
Results

- MINORS Average Score: 19/24
- MINORS Range: 16-21/24
- Sample sizes range from 18-71 (n=475)
- Outpatients with HD history of 3-48 months
Results cont.

Interventions:

• Upper extremity or lower extremity cycle ergometer (8 studies)\(^3,5,7,14,17,18,21\)
• Resistance exercise (5 studies)\(^7-9,14,20\)
• Walking (2 Studies)\(^6,10\)
• Neuromuscular electrical stimulation (2 studies)\(^18,19\)
• Combination of treatments (3 studies)\(^7,14,18\)
Results cont.

Timing:

- Interventions lasted 30-60 minutes
- During first 1-2 hours (9 studies)\(^3,5-7,10,14,17,19,20\)
- During hours 2-3 (2 studies)\(^9,18\)
- Unspecified (2 studies)\(^8,21\)
Results cont.

Intensity:

• RPE 7 (1 study)10
• RPE 12-15 (7 studies)3,5-7,14,17,21
• RPE 15-17 (1 study)8
• Not addressed (4 studies)9,18-20
Results cont.

Functional outcome measures used included:

- 6MWT (10 studies)3,5-8,10,14,18-20
- Variants of the sit to stand test (4 studies)6,14,19,20
- Incremental shuttle walk test (1 study)21
- Short physical performance battery (1 study)9
- Sit and reach (1 study)6
- Hemodialysis patient fatigue scale (1 study)17
Results cont.

- Of 475 total patients in the 13 studies, only 4 incidents were reported indirectly related to intervention.
- 0.84% of patients experienced an event.
- The 4 incidents:
 - 1 Rotator cuff tear
 - 1 Musculoskeletal pain
 - 1 Unsteady pedaling
 - 1 RPE exceeded the experimental parameters
Conclusion
Conclusion

• Moderate to strong evidence showing that outpatient PT during HD is **safe, feasible, and improves functional mobility**
 • Significantly greater distance covered in 6MWT
 • Decreased time to perform sit to stand variants
 • Significant improvement in lower extremity function and flexibility
 • Significantly improved exercise capacity on the treadmill
 • Significantly increased physical activity in experimental groups
Clinical Relevance

• PT sessions are often missed in acute care due to HD treatments and subsequent fatigue
• Evidence supports the use of PT in the first 1-2 hours of HD in outpatient settings, without significant adverse events in patients with an established HD regimen
• Many of the reported interventions used in studies could be applied to the acute care setting
Limitations

- Lack of studies conducted in the acute setting
- Small sample sizes
- Varying protocols
- Various outcome measures
- Selection biases
- Lack of long term follow-up
- Studies conducted in foreign countries
Future Research

Future research should focus on the feasibility and safety of monitored PT during HD in **acute care**, using standardized interventions and outcome measures.
Take Home Message

Clinicians should consider collaborating with a nephrologist to determine if a patient with an established HD program who is hemodynamically and medically stable would benefit from an intradialytic PT program on a case by case basis.
Thank you!

• Dana Maida, PT, DPT, GCS
• Barbara Wagner, PT, DPT, MHA
• Tracey Collins PT, PhD, MBA, GCS
• John Sanko, PT, EdD
• Jennifer Schwartz PT, DPT, NCS
• Bonnie W. Oldham
• Kevin R. Norris
References

References

Questions?