The Effects of Photobiomodulation on Cardiorespiratory Endurance in Adults with Chronic Obstructive Pulmonary Disease: A Systematic Review

Natalia Kucharska SPT; Lauren Turrisi SPT; Julia Franco SPT; Sarah Murphy SPT; Dr. Renee Hakim PT, PhD, NCS; Dr. Anthony Carusotto PT, DPT
Department of Physical Therapy, The University of Scranton, Scranton, PA

Introduction/Purpose

Chronic Obstructive Pulmonary Disease (COPD) affects millions of Americans and is the 3rd leading cause of disease related deaths in the US.1 People with COPD experience symptoms of dyspnea, muscle weakness, and decreased endurance.1-2 Photobiomodulation (PBM) utilizes laser therapy (LT) and/or light-emitting diode therapy (LEDT) to remove blood lactate, enhance vasodilation, and increase muscle ATP. As a result, PBM inhibits muscle fatigue and oxidative stress in the muscle to improve cardiorespiratory endurance.1-4 The purpose of this systematic review is to determine the effects of PBM on CRE in adults with COPD.

Materials/Methods

Four electronic databases (CINAHL, ProQuest, PubMed, ScienceDirect) were systematically searched using search terms: (COPD OR "chronic obstructive pulmonary disease" OR "obstructive disease") AND (Photobiomodulation OR "low level laser" OR "light emitting diode" OR phototherapy).

Search limits: English, peer-reviewed. Selection criteria: adults 18 years or older diagnosed with COPD, group interventions using PBM (LT or LEDT) with a control, comparison group, or compared to baseline. Primary outcomes included: endurance, dyspnea, and lower limb fatigue (LLF). Two reviewers independently assessed each study for methodological quality and came to a consensus based on PEDro guidelines.

Results

Of the 697 articles screened for eligibility, 6 met the inclusion criteria (4 RCTs, 2 quasi-experimental). Sample sizes ranged from 10-40 participants (total=126) and the ages ranged from 19-74 years old. Four of the 6 studies reported statistically significant improvements in 3 primary outcome areas: endurance, dyspnea, and LLF. Statistically significant improvements were noted for LEDT (peak torque) with the use of LEDT and LT on the quadriceps muscles.1 Endurance (6MWLT) demonstrated statistically significant improvements in 2 studies when using LT alone4 or combined with LEDT5 when applied over the lower extremity muscles. Lastly, 2 studies demonstrated statistically significant improvements in dyspnea scores (self-report scales and pulmonary function tests) when treatment groups received LT alone6 or combined with LEDT.7 One study demonstrated clinically relevant improvements in 3 primary outcomes when using LEDT.8 One study did not find statistically significant or clinically relevant outcomes when applying LEDT.4 There was no correlation between number of sites or duration of treatment session and statistically significant outcomes.3-8

Conclusion/Clinical Relevance

Moderate to strong evidence supports using PBM to improve CRE in adults with COPD. Specifically, studies using LT revealed more robust findings including improved endurance, LLF, and dyspnea. Limitations included small sample size, the same lead researcher on 3 of the 6 studies, and lack of group randomization in 2 of the 6 studies. Further research is needed to assess the specific parameters of LT PBM for the most optimal CRE outcomes in adults with COPD. Clinicians should consider incorporating PBM to improve CRE in adults with COPD. LT may be more beneficial due to the deeper tissue penetration which enhances oxygen uptake into the muscle. Specifically, applying LT to the quadriceps or intercostals may benefit endurance, dyspnea, and LLF.

Reference


PRISMA

Records identified through database searching: (n = 697)

Records after duplicates removed: (n = 663)

Records excluded after screening by title, abstract, design and language: (n = 653)

Full-text articles assessed for eligibility: (n = 10)

Studies included: (n = 6)