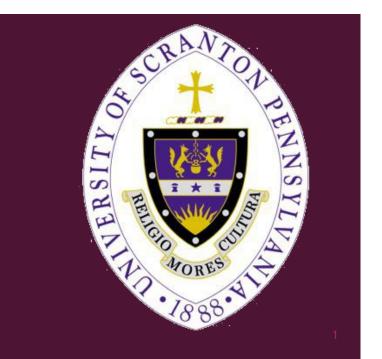
The Effectiveness of Virtual Reality as an Intervention to Decrease Chronic Low Back Pain in Adults as Compared to Standard Therapeutic Intervention: A Systematic Review


Patrick McCarty, SPT

David Wisowaty, SPT

Amanda Kuptsow, SPT

Elizabeth Tapia, SPT

Peter Leininger, Ph.D., PT, OCS

PREVALENCE OF CHRONIC LOW BACK PAIN (LBP)

- According to the American Physical Therapy Association's "Move Forward" Low Back Pain Survey (2012)¹
 - More than one-third of Americans reported LBP impacts ability to perform daily tasks, exercise, and sleep
 - Nearly 3 in 4 Americans (72%) reported using pain medications to relieve symptoms

- National Institute of Neurological Disorders and Stroke (2014)²
 - 80% of Americans experience LBP
 - Most common cause of job-related disability

PREVALENCE OF CHRONIC LOW BACK PAIN (LBP)

- Centers for Disease Control, Summary Health Statistics (2015)³
 - LBP ranked higher than neck pain, face/jaw pain, and pain related to severe headaches and migraines for adults in the U.S. aged 18 and older
 - Greater than one-third of Americans aged 45-75 and older experience LBP
- A qualitative study by Palazzo, Klinger, and Dorner et al examined barriers to exercise program adherence for patients experiencing chronic LBP (2016)⁴
 - Common reasons reported for failed adherence: repetitive exercise program, lack of feedback, fear avoidance behaviors, lack of support, lack of motivation
 - Solutions offered by patients: social networks, videos for guidance in good form, virtual reality programs that provide feedback, progressive challenge

NON-IMMERSIVE VIRTUAL REALITY

<u>Immersive Virtual Reality</u>⁵

- Non-invasive computer simulation
- User interacts with a three dimensional computer generated environment
- User wears a head mounted display
- User interacts via accessory devices such as keyboards, mice, or controllers, or with bodily motions
- Considered to be the highest interactive implementation of virtual reality

Non-Immersive Virtual Reality⁵

- Non-invasive computer simulation
- User interacts with a two dimensional computer generated environment
- Display is usually a computer monitor or a TV screen
- User interacts via accessory devices such as keyboards, mice, or controllers, or with bodily motions
- Less costly to implement than immersive virtual reality

PURPOSE

■ To determine the effectiveness of virtual reality (VR) as an intervention to decrease chronic low back pain (LBP) in adults as compared to conventional physical therapy (PT) intervention.

METHODS

Search Terms:

 (virtual reality OR VR OR virtual reality gaming OR gaming) AND (back pain OR chronic back pain OR low back pain OR LBP)

Search Limits:

- English language
- Human subjects

Databases:

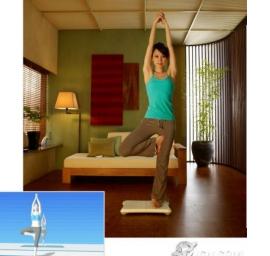
MEDLINE/Pubmed, Proquest, CINAHL, Cochrane Library, ScienceDirect

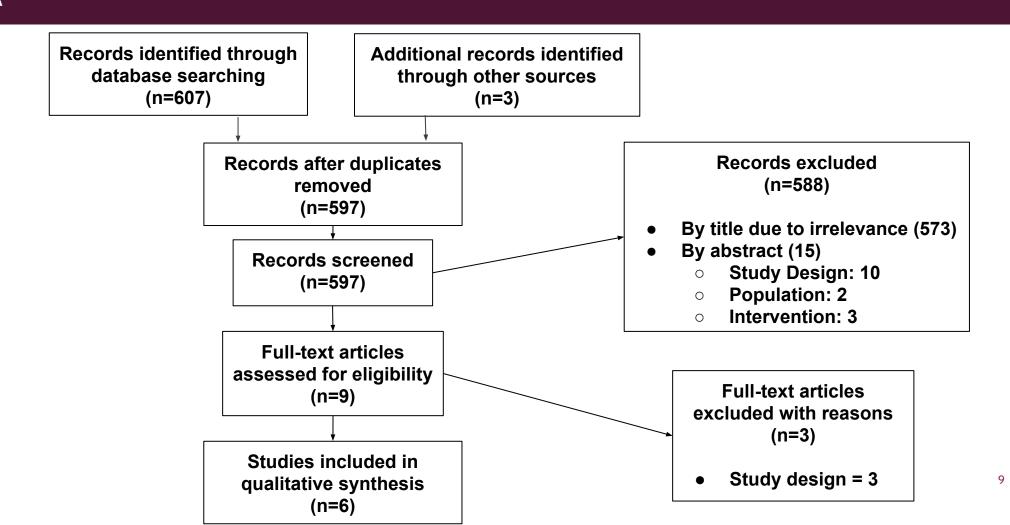
SELECTION CRITERIA

Selection Criteria:

- Diagnosis of chronic low back pain (> 2 months)
- Adults 18 years and older
- Randomized controlled trials (RCT)
- Interventions including VR
- Assessment using a valid and reliable pain scale

EXAMPLE VIRTUAL REALITY SYSTEMS





PRISMA

Identification

PEDro SCORING

Study	1	2	3	4	5	6	7	8	9	10	11	Total
Yelvar et.al	Y	Υ	N	Y	N	N	Y	Y	Y	Υ	Y	7
Thomas et. Al	Υ	Υ	Y	Υ	N	N	N	Y	Y	Υ	Υ	7
Kim et. al	Υ	Υ	N	Y	N	N	N	Υ	Υ	Y	Υ	6
Park et. al	Y	Y	Y	Υ	N	N	N	Y	Y	N	N	5
Monteiro- Junior et.al	Y	Υ	Y	Y	Y	Y	Υ —	Y	Y	Υ	Υ	10
Zavarize et.al	N	Υ	N	Y	N	N	N	Y	Y	N	Υ	5

Average: 6.7

Range: 5-10 (Moderate to Good Evidence)

RESULTS

- Samples ranged from 21-52 subjects (207 total)
- Average age of subjects ranged from 24-68 years old
- Five of 6 studies reported baseline average LBP ranging from 6-7 on a visual analog scale
- VR intervention ranged from 15-30 minutes (avg. = 23.3)
 - Frequency ranged from 3-5 sessions/week (avg. = 3.5)
 - Duration ranged from 2-8 weeks (avg. = 5.5)

RESULTS

- Of the 6 studies selected:
 - All used non-immersive VR
 - All reported significant within group differences in pain reduction for VR groups
 - All were compared to control groups receiving traditional therapeutic exercises
 - Interventions included VR as the sole treatment or in conjunction with therapeutic exercises
- Four of 6 studies compared between group differences:
 - Two found statistically significant reductions in pain favoring VR intervention groups
 - Wii Fit Yoga
 - VR Walking program (viewed on screen, with video glasses)

RESULTS

- Other clinically significant benefits reported in the studies:
 - Improved functional outcomes^{6,7,9} (Sit to Stand, TUG, 6MWT, ODI)
 - Decrease in fear avoidance behavior^{7,9} (Tampa Kinesiophobia Scale, FABQ)
 - Improved well-being¹⁰ (RAND-36 Mental Health Composite)

LIMITATIONS

- Variable treatment parameters
 - Frequency (3-5 sessions), time per session (15-30 min), treatment duration (2-8 wks)
- Variable VR interventions
 - Commercial systems: Wii Fit (recreational games, yoga, task-specific training)
 - VR passive walking program, tablet games
 - VR dodgeball (system developed through research)
- Lack of between group comparisons in two studies
- Lack of follow-up to determine long term effects of interventions
- Limited databases used

CONCLUSIONS

- Moderate to strong evidence suggesting that non-immersive VR is a promising intervention to consider as part of a therapeutic exercise program for patients with chronic LBP, but research is limited to suggest it is superior to therapeutic exercise programs alone.
- Further research is needed to determine which specific non-immersive VR programs and treatment parameters are most effective for quality evidence-based practice.

CLINICAL RELEVANCE

- VR is a novel opportunity for task-specific training in a stimulated, safe environment
- Emerging evidence showing that VR:
 - Increases functional outcomes attained in therapy^{6,7,9}
 - Improves emotional well-being¹⁰
 - Helps to breaks the cycle of fear avoidance behaviors^{7,9}

CLINICAL RELEVANCE

- Recommended VR session parameters for pain reduction:
 - 20-25 minutes per session
 - 3-5 times a week for 4-6 weeks
- Clinicians should consider VR as an adjunct to conventional PT to improve delivery of patient care

FUTURE RESEARCH

- Future studies should:
 - Examine pain reduction in VR only groups as compared to conventional PT groups
 - Examine effectiveness of VR programs in maintaining improved pain outcomes over time through follow-up assessments
 - Determine impact of VR interventions in improving patient adherence to plan of care for chronic LBP
 - Establish more consistent treatment parameters for non-immersive VR programs to improve application to practice
 - Compare efficacy of non-immersive and immersive VR programs in treatment of chronic LBP

CURRENT RESEARCH ON VR AND LBP

■ Video-game based exercises for older people with chronic low back pain: a protocol for a feasibility randomised controlled trial (the GAMEBACK trial)¹² (2017)

- Attitudes toward a virtual reality physical activity intervention among veterans with chronic low back pain¹³ (2017)
 - Supplement
 – Journal of Pain prints abstracts of presentations where data is yet to be published

ACKNOWLEDGEMENTS

Thank you:

- Dr. Leininger
- Dr. Hakim
- Dr. Collins
- Dr. Sanko
- Dr. Trost
- DPT students, faculty, and guests!

REFERENCES

- 1. American Physical Therapy Association. Most Americans Live with Low Back Pain and Don't Seek Treatment. http://www.apta.org/Media/Releases/Consumer/2012/4/4/. Updated May 25, 2012. Accessed September 25, 2017.
- 2. National Institute of Neurological Disorders and Stroke. Low Back Pain Fact Sheet. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Low-Back-Pain-Fact-Sheet. Published December 2014. Accessed September 25, 2017.
- 3. Centers for Disease Control and Prevention. Summary Health Statistics: National Health Interview Survey. https://ftp.cdc.gov/pub/Health_Statistics/NCHS/NHIS/SHS/2015_SHS_Table_A-5.pdf. Updated January 24, 2017. Accessed September 25, 2017.
- 4. Palazzo C, Klinger E, Dorner V et al. Barriers to home-based exercise program adherence with chronic low back pain: Patient expectations regarding new technologies. *Ann Phys Rehabil Med*. 2016;59(2): 107-113. doi: 10.1016/j.rehab.2016.01.009.
- 5. Shahrbanian S, Ma X, Aghaei N, Korner-Bitensky N, Moshiri K, Simmonds M. Use of virtual reality (immersive vs. non immersive) for pain management in children and adults: A systematic review of evidence from randomized controlled trials . *European Journal of Experimental Biology*. 2012;2(5):1408-1422
- 6. Monteiro-Junior RS, de Souza CP, Lattari E, et al. Wii-Workouts on Chronic Pain, Physical Capabilities and Mood of Older Women: A Randomized Controlled Double Blind Trial. CNS Neurol Disord Drug Targets. 2015;14(9): 1157-1164. doi:10.2174/1871527315666151111120131
- 7. Yelvar GDY, Çırak Y, Dalkılınç M, Demir YP, Guner Z, Boydak A. Is physiotherapy integrated virtual walking effective on pain, function, and kinesiophobia in patients with non-specific low-back pain? Randomised controlled trial. *Eur Spine J.* 2016;26(2):538-545. doi:10.1007/s00586-016-4892-7.
- 8. Thomas J, France C, Applegate M, et al. Feasibility and safety of a virtual reality dodgeball intervention for chronic low back pain: a randomized clinical trial. J Pain. 2016; 17: 1302-1317
- 9. Kim SS, Min WK, Kim JH, Lee BH. The Effects of VR-based Wii Fit Yoga on Physical Function in Middle-aged Female LBP Patients. J Phys Ther Sci. 2014;26(4): 549-552. doi:10.1589/jpts.26.549
- 10. Park J, Lee S, Ko D. The Effects of the Nintendo Wii Exercise Program on Chronic Work-related Low Back Pain in Industrial Workers. J Phys Ther Sci. 2013;25(8):985-988. doi:10.1589/jpts.25.985.
- 11. Zavarize S, Paschoal M, Wechsler S. Effects of physiotherapy associated to virtual games in pain perception and heart rate variability in cases of low back pain. MTP&Rehab Journal. 2016;14(354). doi:10.17784/mtprehabjournal.2016.14.354
- 12. Zadro JR, Shirley D, Simic M. Video-game based exercises for older people with chronic low back pain: a protocol for a feasibility randomised controlled trial (the GAMEBACK trial). *J Physiother*. 2017; 103(2): 146-153. doi: 10.1016/j.physio.2016.05.004.
- 13. Penn T, Browning W, France C, Hardee G, Zielke M, Trost Z. Attitudes toward a virtual reality physical activity intervention among veterans with chronic low back pain. *J Pain.* 2017; 18(4): S1. doi: 10.1016/j.jpain.2017.02.004

QUESTIONS?