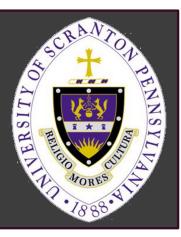
THE IMPACT OF PRENATAL LEAD EXPOSURE ON COGNITIVE & PHYSICAL HEALTH OUTCOMES AMONG INFANTS AND CHILDREN IN BANGLADESH

BRIANA ABRAMS, SPT

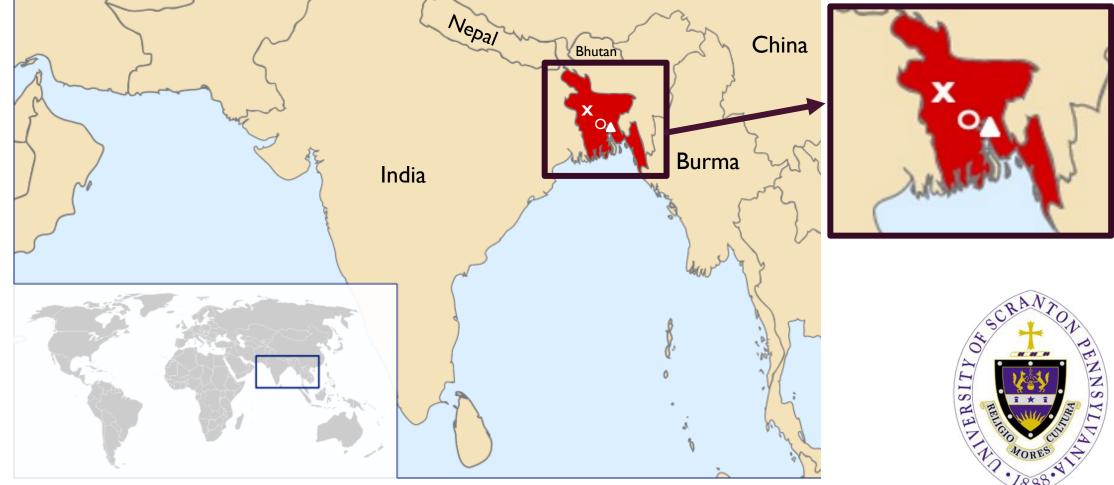

ALEXA CARDELLA, SPT

ALESIA HEIMES, SPT

MEGHAN NALLY, SPT

LORI WALTON, PT, DPT, MSCPT, MPH(S), PHD

NICHOLAS RODIO, PT, DPT


OBJECTIVES

By the end of the presentation:

- I. Understand the negative effects of prenatal lead exposure on infants and children in Bangladesh
- 2. Recognize the significance of the prevalence of lead exposure in the country of Bangladesh
- 3. Understand why Physical Therapists in Bangladesh should be aware of the implications of lead exposure on infantile and childhood development

BANGLADESH

3

https://www.google.com/imgres?imgurl=https%3A%2F%2Ffollowthepin.com%2Fimages%2Flibrary%2Fwhere-is-bangladesh-located.jpg&imgrefurl=https%3A%2F%2Ffollowthepin.com%2Fwhere-isbangladesh%2F&tbnid=sUBUsHAWuSEtxM&vet=12ahUKEwiHlvK2q8z6AhUcn3IEHXEDAUEQMyhGegUIARDRAQ..i&docid=X88MMyd9ESxkrM&w=1024&h=570&q=map%20of%20bangladesh&ved=2ahUKEwiHlvK2q8z6AhUcn3IEHXEDAUEQMyhGegUIARDRAQ

LEAD EXPOSURE SUSCEPTIBILITY

- Lack of environmental regulations¹⁻²
- Malnutrition¹⁻²
- Micronutrient deficiencies¹⁻²

PRENATAL LEAD EXPOSURE IN BANGLADESH

- Working Place³
- Industrial or Urban Areas³
- Air pollution³
- Consumption of lead polluted water and food³

HARMFUL IMPACTS OF LEAD

- Harmful Impacts of Lead Include
 - Lower Neurodevelopment Scores²
 - Disrupt normal cellular processes & weaken immune defense³
 - Deplete essential nutrients from body³
 - GI Cancer³
 - Long-term exposure: MS, PD, AD, MD, CA³
 - Stunting in children⁴

Polluted River in Bangladesh

PURPOSE

This systematic review will analyze the effects of prenatal lead exposure on the cognitive and physical development of infants and children in Bangladesh.

- Search Engines:
 - Springer Link
 - ProQuest
 - PubMed
 - ScienceDirect
- Search limits:
 - Peer-reviewed (all databases)
 - Dates: January 2011- September 2022 (all databases)
 - Articles (Springer Link, only)
 - Research articles (ScienceDirect, only)

Search terms:

("prenatal" OR "pregnant" OR "antenatal" OR "fetal") AND ("children" OR "infants") AND ("lead exposure" OR "lead toxicity") AND "Bangladesh"

- Study Designs: Prospective Cohort Studies, only
- Inclusion Criteria:
 - Type: Lead exposure
 - Time of lead exposure: During fetal development
 - Setting: Bangladesh

Age outcomes are assessed: Birth to age 12

Health Outcomes: Stunting & cognitive scores

Evidence Appraisal:

Studies were independently evaluated for methodological quality by two blinded reviewers using the Scottish Intercollegiate Guidelines Network (SIGN): Cohort Studies Tool.

Identification of studies via databases and registers Records removed before screening: Duplicate records removed (n = 54) Identification Records identified from*: Records marked as ineligible by Databases (n = 483) automation tools (n = 0) Citation Searching (n=3) Records removed for other reasons Registries (n = 4) (n = 0)Records excluded** Records screened (n = 367) (n = 436) Reports not retrieved Reports sought for retrieval (n = 0)Screening (n = 69) Reports excluded: (n=62) No Bangladesh population (n = 33) Reports assessed for eligibility No Health Outcomes (n = 10) (n = 69) No Prenatal Exposure (n = 6) Mixed Metals (n=5) No lead (n=5) Childhood Exposure (n=1) Inappropriate study design (n=1) Lead was a confounding variable (n=1) Studies included in review Included (n = 7)Reports of included studies (n = 0)

RESULTS

*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers).

**If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools.

RESULTS

- Acceptable (+) to high quality (++) evidence^{2,4-9}
- Total N: 12,617 mothers and 8,874 infants/children^{2,4-9}
- Locations of studies:^{2,4-9}
 - Matlab (2)
 - Sirajdikhan and Pabna (5)
- Mean age at time of assessment: birth to age 5^{2,4-9}

RESULTS

Assessment Measures	Number of Studies
Mothers' urinary lead levels at delivery ⁴	Ι
Infant/child fingerstick blood ^{2,5-7}	4
Birth umbilical cord lead levels ^{2,6,8-9}	4

RESULTS

Primary Outcome Measure	Number of studies
Birth weight ^{2,4,6-7,9}	5
Birth height ^{2,4,6}	3
Infantile weight and height ⁴	I
Childhood height and weight ^{4,5}	2
Stunting ^{2,5,6}	3
Bayley Scales of Infant Development (BSID): Motor and Cognitive ^{2,7-9}	4
Head circumference ⁷⁻⁹	3
Kidney volume ⁵	I

STATISTICALLY SIGNIFICANT RESULTS

- Negative associations between blood lead concentration and BSID cognitive scores⁷
- Each one unit increase in natural log cord blood lead in presence of stunting was associated with a 2.1 unit decrease in cognitive scores²
- Associations between stunting at 4.5 years and blood lead at 14 & 30 weeks gestation⁵
- Inverse associations between prenatal lead exposure in late gestation & kidney volume in pre-school aged females⁵

CONCLUSION

- High Quality Evidence Supports:
 - Association between prenatal lead exposure and:
 - Stunting
 - Lower Cognitive Scores

Stunting exacerbates negative effects of lead

LIMITATIONS

- Inconsistent methods of measuring lead exposure and outcomes
- Recruitment from two primary cohorts
- Lack of Stratification for Confounding Variables
 - i.e. Maternal education, socioeconomic status, post rainy-season birth, maternal chewing tobacco, maternal nutrition, etc.

FUTURE RESEARCH

- Further research is needed to...
 - Measure the impact of maternal factors on prenatal lead exposure
 - Identify any further impacts that lead exposure has on the mother and child
 - Identify the age at which lead exposure, either during the development of the fetus or the infant, affects stunting and cognition the most

CLINICAL RELEVANCE

Physical Therapists in Bangladesh should...

- Be aware of potential impacts of lead exposure
- Administer cognitive and physical screening to children
- Provide community-based education on lead exposure and prevention during pregnancy

PABNA, BANGLADESH

PHOTO PERMISSION GRANTED

REFERENCES

- Gleason K, Shine JP, Shobnam N, et al. Contaminated turmeric is a potential source of lead exposure for children in rural Bangladesh. J Environ. 2014; 2014: 1-5. doi:<u>http://dx.doi.org/10.1155/2014/730636</u>
- 2. Gleason KM, Valeri L, Shankar AH, et al. Stunting and lead: using causal mediation analysis to better understand how environmental lead exposure affects cognitive outcomes in children. J Neurodev Disord. 2020;12:1-10. doi:http://dx.doi.org/10.1186/s11689-020-09346-x.
- 3. Real IH, Azam HM, Majed N. Consumption of heavy metal contaminated foods and associated risks in Bangladesh. *Environ Monit* Assess. 2017;189(651):1-14. doi:https://doi.org/10.1007/s10661-017-6362-z
- 4. Gardner RM, Kippler M, Tofail F, et al. Environmental exposure to metals and children's growth to age 5 years: a prospective cohort study. *Am J Epidemiol.* 2013;177(12):1356-1367. doi:10.1093/aje/kws437.
- 5. Skröder H, Hawkesworth S, Moore SE, Wagatsuma Y, Kippler M, Vahter M. Prenatal lead exposure and childhood blood pressure and kidney function. *Environ Res.* 2016;151:628-634. doi:10.1016/j.envres.2016.08.028.
- 6. Gleason KM, Valeri L, Shankar AH, et al. Stunting is associated with blood lead concentration among Bangladeshi children aged 2-3 years. Environ Health. 2016;15. doi:<u>http://dx.doi.org/10.1186/s12940-016-0190-4</u>.
- Rodrigues EG, Bellinger DC, Valeri L, et al. Neurodevelopmental outcomes among 2- to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water. Environ Health. 2016;15. doi:<u>http://dx.doi.org/10.1186/s12940-016-p0127-y</u>.
- Valeri L, Mazumdar MM, Bobb JF, et al. The joint effect of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20-40 months of age: evidence from rural bangladesh. Environ Health Perspect. 2017;125(6):067015. doi:10.1289/EHP614.
- 9. Wang Z, Birgit CH, Wang C, et al. Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment. *Environ Health*. 2017;16. doi:<u>http://dx.doi.org/10.1186/s12940-017-0288-3</u>.

ACKNOWLEDGEMENTS

Thank you!

- Faculty Advisors
 - Lori Walton, PT, DPT, MSCPT, MPH(S), PHD
 - Nicholas Rodio, PT, DPT
- Ian O'Hara
- University of Scranton Department of Physical Therapy Faculty, Staff, & Student Body

Any Questions?

