The Effect of Fatigue on Balance and Fall Risk using Balance Outcome Measures in Community Dwelling Older Adults: A Systematic Review

Kyle Kasman, SPT
Daniel DiPaola, SPT
Nicholas Constantino, SPT
James Leighty, SPT
Peter Leininger, PT, PhD, OCS
Background1,2

➢ One fourth of all individuals aged 65 and older fall each year in the US

➢ Falls are the leading cause of fatal and non-fatal injuries for older adults in the US

➢ Falls threaten personal safety and independence while also generating enormous economic and personal costs

➢ Common factors that can lead to a fall:
 ○ Weakness, fatigue, balance loss, vision loss, improper footwear, medications, and vitamin D deficiency

➢ Falls result in more than 2.8 million injuries treated in emergency departments on average every year

➢ Falls can result in up to 27,000 deaths on average every year
Purpose

➢ To investigate the impact of fatigue on balance ability and fall risk in older adults, recorded through the use of both clinical and laboratory balance tests.
Methods

- **Literature search**: CINAHL, ProQuest Health and Medical Complete, Science Direct, and Google Scholar

- **Search terms**: fatigue OR exhaustion AND balance AND elderly OR older adults OR senior OR geriatric AND falls

- **Search Limitations**: human subjects and studies conducted between 2006 and 2016.
Eligibility Criteria

- ≥ 60 y/o community dwelling older adult
- Individuals balance and muscle responses tested after fatigued
- All study types were accepted
Prisma
MINORS Scores

<table>
<thead>
<tr>
<th>Article</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias et al 2014</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>14/16</td>
</tr>
<tr>
<td>Bellew et al 2006</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>13/16</td>
</tr>
<tr>
<td>Islami et al 2012</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>13/16</td>
</tr>
<tr>
<td>Hatton et al 2012</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>19/24</td>
</tr>
</tbody>
</table>
MINORS Scores

<table>
<thead>
<tr>
<th>Study</th>
<th>Score 1</th>
<th>Score 2</th>
<th>Score 3</th>
<th>Score 4</th>
<th>Score 5</th>
<th>Score 6</th>
<th>Score 7</th>
<th>Score 8</th>
<th>Score 9</th>
<th>Score 10</th>
<th>Score 11</th>
<th>Score 12</th>
<th>Score 13</th>
<th>Score 14</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helbostad et al 2007</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>19/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mademli et al 2008</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>17/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morrison et al 2016</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>18/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagano et al 2014</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>17/24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results$^{6,8-10}$

Clinical Outcome Measures:

➢ Decrease in Berg Balance Scale scores in older adults after fatigue

➢ Decrease in the Single Leg Stance Time Test, Lower Extremity Reach Test, and modified Functional Reach Test in the older adults after fatigue

➢ Decrease in Physiological Profile Assessment in the older adults after fatigue
Results$^{3-5,7}$

Laboratory Tests:

- Increase in sway, step length, mediolateral trunk acceleration, step length variability, lead limb vertical loading rate
- Decreases in foot reaction time, minimum foot clearance, average margin of stability, amplitude and vertical force of the lower extremity in phase to touchdown
- Decreases in scores when using the Modified Clinical Test of Sensory Integration and Balance test
- All of these differences were found to be statistically significant between p$<.05$ - .001
Limitations

➢ Each study used different fatiguing protocols and outcome measurements.
➢ None of the studies found were randomized controlled trials.
Conclusion

➢ Fatigue has a statistically and clinically significant effect on the performance of older adults on both clinical and laboratory balance tests.

➢ These results included both lower scores on balance tests and an increase in kinematic gait deviations associated with increased fall risk.

➢ Fall risk assessment may be more beneficial when performed with the subject in a fatigued state.
Clinical Relevance

➢ Fatigue impacts older adults’ performance on balance tests conducted to determine fall risk.

➢ A fatiguing task done prior to performing a balance test would be a highly functional combination to use as a primary prevention screen for fatigued fall risk in older adults.
Clinical Relevance

➢ Healthy older adults determined to not be a risk for fall via clinical and laboratory balance testing might actually be at risk for fall when tested in a fatigued state.

➢ Walking tests such as the 6-minute walk test may be the best functional fatigue protocol to use in a clinical setting as every outcome measurement done in these studies directly relates to gait and balance while walking.
Suggested Future Research

➢ Future studies should try and focus on more clinical outcome measure and functional fatigue tasks. For example, use the 6 minute walk test to fatigue the patient and then use a clinical outcome measure such as the BBS to measure fall risk and balance. There is no standardized fatiguing protocol.
Thank you!

- Dr. Leininger, PT, PhD, OCS
- Bonnie Oldham, MS, MLS, AB
- Dr. Sanko, PT, EdD
- Dr. Tracy Collins, PT, PhD, MBA, GCS
Questions?
References

